
Using Grid Computing to Enable Distributed Radar Data Retrieval and
Processing ∗

Diego Arias and Wilson Rivera

Parallel and Distributed Computing Laboratory
Electrical and Computer Engineering Department

University of Puerto Rico at Mayagüez, Puerto Rico 00680, USA

∗ This material is based upon work supported by the National Science Foundation under Grants No. 0313747 and No. 0424546.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation

Abstract

We describe a tool that implements a set of services
to manipulate and store data from a radar network in a
transparent way to end users. A major requirement of
this system is data availability and reliability.
Consequently, we have implemented a redundancy
schema based on the Information Dispersal Algorithm
(IDA). Preliminary results show that the IDA based
replication provides better reliability and less storage
spending than traditional replication.

1. Introduction
 The National Science Foundation Engineering
Research Center for Collaborative Adaptive
Sensing of the Atmosphere (CASA) is focused on
developing Distributed Collaborative Adaptive
Sensing (DCAS) [1] as a systems technology to
improve our ability to monitor the earth’s lower
atmosphere. Current approaches to sampling the
first three kilometers of atmosphere are physically
limited in their ability to provide the required
resolution and coverage. For example, radar
technology is currently limited by the focus on
long range sensing by single instruments.
Requiring radar to view distances up to 240km, as
in the case of NEXRAD [2], introduces the
problem of the earth’s curvature [3]. As the range
increases away from the radar, the earth’s surface
curves away under the radar beam. This causes the
volume of atmosphere being observed to be located
at an increasing height above the earth’s surface.
The radar is unable to observe the atmosphere
close to the earth’s surface where people live.
DCAS aims to radically alter the radar paradigm.
Rather than relying on single radar to provide long
range (hundreds of kilometers) coverage, DCAS

proposes to mosaic the output of lower power
shorter range (tens of kilometers) radars.
 It must be acknowledged that reducing the
range would require an increase in the number of
radars to cover the same land area. By directly
comparing areas, reducing the maximum required
range from 240 km to 30 km would require
approximately 64 short range radars to cover the
area of the single long range radar. While this may
appear to detract from the DCAS argument an
analogy may be made with the field of computing.
Recent years have shown the utility in using many
commodity computers networked to form a larger
system in the place of a single more expensive,
larger system. The act of networking many
inexpensive radars to cover the same area as a
single high power radar introduces new capabilities
into the system, such as fault tolerance and
adaptability of the network sensing strategy, which
the larger systems are currently not capable of.

A parallel development in the technology
landscape is grid computing [4], which involves
coordination, storage and networking of resources
across dynamic and geographically dispersed
organizations in a transparent way for users. The
Open Grid Services Architecture (OGSA) [5],
based upon standard Internet protocols, is
becoming a standard platform for grid services and
application development. The integration of grid
computing and radar network technologies enables
the complementary strengths of these technologies
to be realized in an integrated platform. However,
it poses several challenges such as the need to
comply with emerging APIs for grid and Web
services, the coordination of communication, and
the requirement of a more data-centric

infrastructure focused on distributed services. In
this paper, we look at the technical problems of
integrating radar data into grid architectures and
present a grid service based infrastructure to
transport, manipulate and store data from different
radars, while preserving data integrity.

The organization of this paper is as follows. In
section 2, the grid integration approach of the radar
network to a grid infrastructure is discussed. In
section 3, the problem of radar availability and
reliability is discussed and solutions to perform
data replication over the grid infrastructure are
presented. Experimental results are presented in
Section 4. Finally, conclusions are listed in section
5.

2. Grid Implementation

The PDClab Grid Testbed, deployed at the
University of Puerto Rico-Mayaguez, is an
experimental grid designed to address research
issues, such as the effective integration of sensor
and radar networks to grid infrastructures. The
PDClab grid test-bed components run CentOS 4.2
and the Globus Toolkit 4.0.11.

The resources available include:

o An IBM xSeries Linux cluster with 64

nodes, dual-processor at 1.2GHz, 53GB of
memory and 1TB of storage.

o Eight (8) IA-64 Itanium servers, dual
processor at 900 MHz, each with 8GB of
memory and 140GB of SCSI Ultra 320
storage

o Two (2) IA-32 Pentium IV servers, dual
processor at 3 GHz, each with 1GB of
memory and 120GB of ATA-100 storage

o One (1) IA-32 Pentium III server, dual
processor at 1.2 GHz with 2GB of memory
and 40Gb of SCSI Ultra 160 storage

For the design and development of a grid-service
based system to access and manipulate radar data,
the initial approach considered is a grid based
system which includes a Grid Portal Interface
developed using Gridsphere2 based portlet
framework, a distributed storage system to radar
data management, and Grid services implementing

1 http://www.globos.org
2 http://www.gridsphere.org

distributed algorithms. The Grid Portal Interface
provides transparent access to end-users. This
interface allows to end users the manipulation of
both, processed and raw radar data, as well as
visualization of weather information, such as
reflectivity in order to estimate rainfall rate over
the west area of Puerto Rico.
 Raw data from radars are sent to a data server
via wireless communication. GridFTP3 is used to
improve data transport from the data server to the
PDCLab Grid Testbed (see figure 1). Data
exchange between server and the Grid testbed is
authenticated using Grid Security Infrastructure
(GSI). Preliminary tests to transport data using the
globus-url-copy client and the gsiftp protocol, have
been successful.

Figure 1:Grid Testbed and Radar Integration

 Data files are dispersed using the Information
Dispersal Algorithm, explained in the next section,
with a redundancy level of 100%. At the same
time these file blocks are sent to the grid testbed
using gsiftp protocol, in a 1:1 distribution, meaning
a block of file per node. Original files are erased
from the server to safe storage resources and the
data remains distributed in the grid. A log file is
preserved in the server to register the scans per
day. Relevant information about the distributed
files is also preserved in the server. When an end-
user enters the portal, a single selection form is
displayed to allow the user choose the interest date.
After selection of the data set, the client can

3 http://www.globus.org/toolkit/docs/4.0/data/gridftp

request for specific scans, at this moment the data
still remains in the grid.

3. Radar Data Availability and Reliability

Implementation of redundancy schemas is a
common strategy to enhance reliability in data
storing [7]. Two different redundancy strategies
have been implemented and analyzed: A simple
replication schema [8] and the Information
Dispersal Algorithm (IDA) [9].

3.1 Information Dispersal Algorithm

The information dispersal algorithm (IDA) was
proposed as a fault-tolerance technique to be used
in secure and reliable storage systems. In the basic
approach, a file F is striped into n blocks of size
|F|/m, where |F| is the size of the file and m is the
number of blocks required to recovery the file F.
A set of secret keys are used to disperse the file,
providing confidentiality to the information. Since
m ≤ n, the redundancy level given by (n/m-1)%,
can be selected to be smaller than replication
technique. The storage spending is |F|*(n/m). An
important feature of this technique is that any m
blocks will reconstruct the file and labels are not
necessary for each block. Additionally IDA
tolerates up to r failures, where r = n - m. Hence,
IDA guarantees a higher availability.

Let F= b1, b2, b3,… be a file, where bi is an
integer taken from a certain range [0 … (2B -1)]. If
bi is two bytes long, as in the actual
implementation, then 0 ≤ bi ≤ 65535. Let p be a
prime number greater than bi. Each bi is an element
of the finite field Zp where all arithmetic operations
are done in mod p. Since p > (2B -1), this implies
an excess of one bit per byte when integers greater
than (2B -1) are obtained, this requires a storage
space increment. In order to avoid the space waste,
all bi values are represented as polynomials with
binary coefficients
(01

)1(
)1(... bxbxbxb B

B
B

B ++++ −
−) and use a larger

degree irreducible polynomial p(x) instead of the
prime p [10]. The polynomial must suffice
([]xZxp 2)(∈) in such a way that all operations
can be done in the finite field E=GF(2B). GF refers
to “Galois Field”.

In order to disperse F, a set of n vectors
E a , ,a ,a ,a n321 ∈… must be chosen, each of

length m, such that every subset of m different

vectors is linearly independent. These vectors are
the keys that will be used to disperse every block
of the file.

Let Anxm be a matrix whose ith row is ai. The file
is divided into sequences of length m (b1, b2, b3, …,
bm) and the dispersal operation is achieved
mapping each sequence bj into a new sequence of n
elements using Anxm.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅

nm

nxm

c

c

b

b
A MM

11

Each resulting element ci is stored in a separated
block of file.

In order to reconstruct the file, m blocks are
required (s1, s2, s3, …, sm) and the recovery
operation is performed as follows: let Bmxm be a
matrix whose rows are (as1, as2, as3, …, asm). To
recover the first m elements of F, the first element
from each different block is needed. The whole file
is obtained mapping sequences of m elements from
each block into sequences of m elements using the
inverse of Bmxm.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅−

nm

mxm

b

b

c

c
B MM

11
1

Note that the inverse of the Bmxm matrix is

guaranteed to exist since the rows of matrix A are
mutually independent, which implies that any
submatrix (in this case Bmxm) is not singular and
thus invertible by deleting m rows of Anxm,.

An Anxm matrix with the properties above
mentioned is the Vandermonde matrix. The ith row
of this matrix is defined as

13210 ,...,,,, −niiiii .
By definition, this matrix has the property that

any submatrix formed by deleting m rows of it, is
invertible. Additionally any matrix derived from
this matrix by a sequence of elementary matrix
transformations, will maintain this property [11].

Finally, an irreducible polynomial must be
chosen. For the current implementation the
polynomial p(x) of degree B over GF(2B), when B
= 16 is

1)(31216 ++++= xxxxxp .

The implementation of the IDA involves
several operations over finite fields. In this case
over GF(216). IDA is implemented as follows:

(1) Create the dispersal matrix A nxm which
must obey the properties described before.

(2) Divide the file F into sequences of m
elements, where each element is 2 bytes of
size. Note that |F| must be divisible by m,
therefore, padding must be added. In order
to disperse the file, each sequence is
multiplied by the matrix A to obtain the
new sequences. The first block will have
the 1st element from the each new
sequence. The second block will have the
2nd element from that sequence and so on.

(3) A unique tag for each block must be
established before these are written as
separated files. This tag corresponds to the
ith row of the matrix A. this tag is
necessary to choose the correct recovery B
matrix.

(4) After the tagged files are ready, they must
be distributed in n nodes or according to
the established data distribution strategy.
The two first bytes of each file are used to
identify the correspondent row. Thus a
maximum of 216 blocks are permitted. The
complete path of these files will be
registered in a log file.

(5) In order to recover the file F, the existence
of at least m blocks must be verified; this
condition is necessary and sufficient to
achieve the recovery operation. The two
first bytes of each file are read to identify
the row of the matrix A. The algorithm
chooses the first m files and creates the
recovery matrix B with the rows found.
Then the inverse of the B matrix is
calculated.

(6) Reconstruct the first sequence of m
elements from the original file multiplying
the matrix B-1 by the sequence formed by
all the first elements from each file found.
Similarly, the second sequence from the
original file is obtained transforming the
sequence consisting of the all second
elements from each file and so on.

(7) Finally, padding must be removed, if
necessary, to obtain the original size of the
file.

4 Experimental Results

A set of experiments have been carried out with
the aim to compare these algorithms and this way,
determine the advantages and the disadvantages of
each one. For our performance analysis we
consider the total number of blocks after applying
redundancy (TB), the size of each block (BS) and
the added redundancy (AR) as parameters and
measure the access reliability (R). In each case the
storage spending (SS) required to perform
redundancy.

0 50 100 150 200 250 300 350 400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Replication Vs Dispersal

Added Redundancy [%]

A
cc

es
s

R
el

ia
bi

lit
y

m=5, p=0.4 - Replication
m=5, p=0.4 - Dispersal

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Replication Vs Dispersal

Added Redundancy [%]

A
cc

es
s

R
el

ia
bi

lit
y

m=16, p=0.6 - Replication
m=16, p=0.6 - Dispersal

 a)
 b)
Figure 3: Reliability vs Added Redundancy
comparison. a) m=5, p=0.4, b) m=10, p=0.6

Information dispersal algorithm shows a better
access reliability than replication algorithm. As a
reference point, for an access reliability R = 0.9
when the probability of failure is p = 0.4, m = 5,
the added redundancy for IDA is AR = 120 %,
while in the replication approach the added

redundancy must be approximately AR ≈ 300 %
(Figure 3(a)). Note that, for replication algorithm,
AR increment is every 100%, because the
redundancy is performed using multiplication with
integer numbers. Figure 3(b) shows the behavior of
the algorithms when the probability p = 0.6 and m
= 16. The reliability of replication approach is
quite deficient if the probability failure increments.

Note that, as shown in Figure 3, the reliability
for IDA is improved when m is incremented
compensating a higher probability of failure.
However, the reliability for replication is
downgraded if the number of blocks is incremented
and is worse still if p is higher. In contrast, a
higher number of m involves a even higher number
of total blocks (TB) and a reduction in the block
size (BS). A small BS can be desirable to obtain
weightless blocks to send them over a loaded
network. In turn a higher TB involves a higher
number of nodes, if the node-block relationship is
1:1. Redundancy is an important feature to be
taking into account when radar data must be
manipulated, because the size of this data is usually
large. Therefore, a proper redundancy must be
selected to avoid storage overhead.

Experiments involving time measurements vs.
data size, take as reference data size from National
Climatic Data Center. This data is a Level II base
data [12], available in compressed tape archive
format. It contains data per day from specific
NEXRAD Level II radar. The compressed data for
a day is about 150 MB, while uncompressed is
about 2.3GB. Note that this is the data mount for
24 hours of continuous scan. For rain fall
measurements and precipitation estimation, the
primary implementation of DCAS network requires
less than 8 hours of continuous scan. Considering
all the exposed before and the limited transmission
due to wireless communication as mentioned,
testing is achieved with data size range from
100MB to 1GB.

In order to improve elapsed time measurements
a comparison point is established. Suppose a
minimum access reliability of 90 %. If p=0.4, is
required to provide data availability in the DCAS
network, an access reliability R ≥ 0.9 can be
obtained with m=8, r=5 (AR = 400% and R=0.921)
for replication algorithm. Similarly, for IDA if R ≥
0.9, m= 8, r=10 (AR= 125 % and R=0.942). Even
though the added redundancy is lower for IDA than

Replication Algorithm, the elapsed time required to
complete dispersal and recovery operations in IDA
is significantly higher than the replication
approach. Figure 4 shows a comparison between
dispersal and recovery operations for both
algorithms with several data sizes.

 a)
 b)
Figure 4: Data Size vs. Elapsed Time
comparison. a)IDA, b)Replication

As is shown in figure 4(b), the replication
algorithm is a lot faster than IDA in both
replication and recovery operations. Note that,
when a file of size 1GB is required to be
distributed, IDA takes long about 20 minutes and
replication algorithm only takes 3.5 minutes.

5. Conclusions
 Implementations of two redundancy
schemas to perform radar data management are
presented. The reliability was the metric selected
since it is an important parameter in the DCAS
systems. At this stage, Information dispersal

algorithm shows a better data reliability than
replication algorithm with less storage spending.
However, this desirable behavior has a
computational cost which implies higher response
times than replication technique. Enhance time
execution of the schemas is a current effort, which
is focused in the replacement of the standard by
high performance libraries.
 Radar system integration with grid
computing technologies has been discussed as
well. Preliminary results demonstrate the
feasibility of such interaction, when independent
and non grid based applications can be integrated
to the grid infrastructure with minimum
requirements. The tested applications were data
management related, especially data movement. A
large amount of data was transported using
GridFTP protocol with GSI support, and the
integrity of the data was preserved successfully.
References

1. McLaughlin, D., J. Brotzge, V.

Chandresakar, K. Droegemeier, J. Kurose,
B. Philips, M. Preston, and S. Sekelsky,
2004: Distributed Collaborative Adaptive
Sensing for Hazardous Weather Detection,
Tracking, and Predicting. International
Conference on Computational Science
2004.

2. National Research Council, Committee on
Weather Radar Technology Beyond
NEXRAD, Weather Radar Technology
Beyond NEXRAD, National Academy
Press, Washingtion D.C., 2002.

3. Doviak, Richard J. and Zrnić, Dušan S.,
Doppler Radar and Weather Observations,
2nd ed., Academic Press, San Diego, 1993.

4. Foster I. and Kesselman C., The grid:
blueprint for a future computing
infrastructure, Morgan Kaufmann
Publishers, 1998.

5. Foster I., Kesselman C., Nick J., and
Tuecke S., The Physiology of the Grid: An
Open Grid Services Architecture for

Distributed Systems Integration, Technical
report, Open Grid Service Infrastructure
WG, Global Grid Forum, June 2002.

6. Díaz, P. L., Aquino, Z., Figueroa-Alamo, C.,
García, R., and Sánchez, A. V., “Water
Resources Data Puerto Rico and The U.S.
Virgin Islands Water Year 2001”, USGS,
Water-Data Report PR-01-1.

7. Wylie, J. J., Bigrigg, M.W., Strunk, J. D.,
Ganger, G. R., Kiliççöte, H., and Khosla,
P. K., “Survivable information storage
system”, IEEE Computer, 33(8):61–68,
August 2000.

8. Santos, J. R., Muntz, R. R., and Ribeiro-
Neto, “Comparing random data allocation
and data striping in multimedia servers”,
SIGMETRICS Perform. Eval. Rev. 28, 1
(Jun. 2000), 44-55.

9. Rabin, M. O., “Efficient dispersal of
information for security, load balancing,
and fault tolerance”, Journal ACM. 36, 2
(Apr. 1989), 335-348.

10. Bestavros, A., “SETH: A VLSI chip for
the real-time information dispersal and
retrieval for security and fault-tolerance”,
In Proceedings of ICPP'90, The 1990
International Conference on Parallel
Processing, Chicago, Illinois, August
1990.

11. Plank, J. S., “A tutorial on Reed-Solomon
coding for fault-tolerance in RAID-like
systems”, Software-Practice and
Experience (SPE), 27(9):995.1012, Sept.
1997. Correction in James S. Plank and
Ying Ding, Technical Report UT-CS-03-
504, U. Tennessee, 2003.

12. National Climatic Data Center, “Data
documentation for DSI-6500 NEXRAD
Level II”, National Climatic Data Center,
Asheville N.C., April 11, 2005.

