
 

1

 

A SCHEDULING ALGORITHM IN A CORE OPTICAL 
ROUTER WITH HETEROGENEOUS TRAFFIC  

Rose Q. Hu
Department of Electrical and Computer Engineering 

Mississippi State University 
Mississippi State, MS 39762-9571, USA 

Email: hu@ece.msstate.edu 
Phone: 662-325-1529, Fax: 662-325-2298  

Robert Best 
Award Solutions, Inc. 

Richardson, TX 75081, USA  

Yi Qian 
Department of Electrical and Computer Engineering 

University of Puerto Rico at Mayagüez 
Mayagüez, Puerto Rico 00680 
Email: yqian@ece.uprm.edu 

Phone: 787-833-3338, Fax: 787-833-3331  

Mingzhou Jin 
Department of Industrial Engineering 

Mississippi State University 
Mississippi State, MS 3976, USA

Abstract 

 

Recent advances in optical networking reveal that large-scale optical 
networks supporting heterogeneous traffic may soon become economical as the 
underlying backbone in wide area networks, in which optical routers play a key role. One 
big challenge in designing future large-scale optical systems is packet scheduling for the 
core optical routers. The optical router is a delay system with packets waiting at its 
ingress queues.  A scheduler is necessary to allocate resources so that delay and jitter 
sensitive real-time traffic can be served with higher priority than the non-delay sensitive 
traffic. The system capacity should also be efficiently utilized.  This is achieved by a 
prioritised non-blocking scalable scheduling algorithm developed in this paper.  The 
proposed algorithm is based on a heuristic approximation of a Linear Integer 
Programming model.  The performance evaluations in a multi-service high capacity core 
optical router show that the heuristic solution is close to the optimal solution most of the 
time, yet it is much easier to implement. 

Keywords: Scheduling, optical router, integer linear programming, QoS, heterogeneous 
traffic.   

1.  Introduction 

Internet traffic has explosively grown in the past few years. It has triggered significant research in 
designing large-scale optical systems with very high-speed core optical switches and routers (e.g., 
[1 3]). One big challenge in designing a large-scale high-speed optical system is packet 
scheduling for core routers. A dynamic scheduling mechanism is necessary to control the 
switching fabric of the optical router, for the purpose of providing non-blocking transmissions 
and dynamic adaptations to varying traffic patterns and volumes over time. The adaptation must 
be fast enough to support fairness and Quality of Service (QoS) requirements as measured in 
terms of delay, Bit Error Rate (BER), throughput, etc. On the other hand, frequent schedule 
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changes may cause network instability on bandwidth control. An effective and ideal scheduling 
design is necessary to offer a good balance among these factors.    

Research work has been conducted on scheduling optical switches and routers. A scheduling 
algorithm is proposed in [4, 5] to provide best-effect services in the Birkhoff-von Neumann 
switch. The problem is formulated as a resource sharing problem that optimizes efficiency and 
fairness. Since it deals with the best-effort services only, the service differentiation  issues  are not 
addressed in [4, 5]. A fair scheduler presented in [6] is suitable in buffer-less circuit-switched 
blocking networks operating with distributed, asynchronous controllers and variable length 
messages. The tradeoffs and performance limitations of the fair scheduler are discussed. The 
circuit-switched optical networks, rather than the packet-switched or IP based networks, are 
studied in that paper. In [7], a hierarchical scheduling framework is introduced in a class of 
photonic packet switching systems based on WDM, in which the flow scheduling is separated 
from the transmission scheduling. As stated in [7], existing work in wide-area optical networks 
largely focuses on the support of end-to-end virtual connections; relatively less attention has been 
paid to support heterogeneous traffic types and to satisfy the potentially different QoS 
requirements of different traffic types. An iterative algorithm that achieves high throughput on 
virtual output queues (VOQs) is introduced in [8]. The algorithm provides fair access to output 
lines and prevents starvation of input queues. However, the algorithm is not practical because of 
its high computational complexity [9]. Although Weighted Bipartite Matching (Assignment) 
algorithms are proven to achieve 100% throughput for all admissible independently and 
identically distributed arrivals [9], their computational complexity is too high for high speed 
implementation [10]. A scheduling algorithm for a combined input and output queuing switch 
with space division multiplexing expansion and grouped inputs/outputs (SDMG CIOQ switch for 
short) is proposed in [10]. The scheduling problem for the SDMG CIOQ switch is abstracted as a 
maximum bipartite k-matching problem. Using the fluid model, it is proven that any maximum k-
matching algorithms on an SDMG CIOQ switch with an expansion factor 2 can achieve 100% 
throughput if input arrivals satisfy the strong law of large numbers and no inputs/outputs are 
oversubscribed.  That study uses uniform traffic and polarized traffic. [11] and [12] address the 
problem of the existence of local scheduling policies that guarantee 100% throughput in a 
network of Input Queued and CIOQ switches. The strong law of large numbers and no 
oversubscription on any link in the network are the only assumptions on the input traffic. While 
100% throughput can be achieved in [10 12], it is not clear whether service can be differentiated 
for different traffic types in all these scheduling algorithms.  

This paper covers the design of a heuristic scheduling algorithm for a core optical router with the 
objective to support heterogeneous traffic types and to achieve service differentiation 
requirements of different traffic types. We address this issue by developing a fast and effective 
heuristic approximation to the optimization model, which aims to maximize the QoS value of the 
whole system by giving priority to the flows with higher QoS values.  The proposed heuristic 
scheme is both starvation free and lock-out free. The heuristic algorithm, in general, results in a 
solution close to the optimal Linear Integer Programming solution, but the heuristic is much 
faster and easier to implement. The performance of the heuristic scheduling algorithm for a multi-
service high capacity optical core router is verified by numerical experiments.   

The rest of the paper is organized as follows: Section 2 briefly describes the core optical router 
architecture for which the algorithm can be deployed; Section 3 provides the details of the 
scheduler designs for the core optical router; Section 4 presents traffic modeling and simulation 
results of the proposed scheduling algorithm with discussions; Section 5 concludes this study.      
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2.  Optical Switch Architecture 

The proposed scheduling algorithm uses the core optical router architecture as described in 
Stanford s OR (Optical Router) Project [1]. The base model of the proposed system 
architecture is characterized as a core optical router surrounded by remote edge routers.  The edge 
routers are connected to the core using wavelength division multiplexing (WDM) links. In 
particular, we use the configurations in Figure 1 to describe the proposed scheduling algorithm. 
However, our solution is not limited to these particular architecture configurations and parameters 
shown.  

The core optical router consists of three stages: 1 core switch fabric, 4 (ingress, egress) edges, and 
4 (ingress, egress) ports or Line Cards (LC) per edge.  Each port carries OC-48 or 2.5 Gbps 
traffic, leading to an edge capacity at OC-192 or 10 Gbps.  A port generates 16 virtual waves, 
each at a bandwidth of OC-3.  Each edge is connected to the core using WDM links with 64 
(16x4) virtual waves, for an aggregated capacity of 10 Gbps from each edge and a combined 40 
Gbps for 4 edges. The core scheduler determines the scheduling patterns to grant, which changes 
as a function of the input traffic characteristics. For this particular optical switch, a fixed length 
scheduling cycle consists of 64 wave slots, with each wave slot at 1 s. During each of 64 wave 
slots, the core switch fabric is capable of establishing a different mesh connectivity pattern from 
the ingress edges to the egress edges.  With the given capacity and the size of the scheduling 
cycle, each wave slot will be able to switch a payload of 1250 bytes (=OC-192 * 1 s). The core 
switching granularity is OC-3 so bandwidth for port-to-port connection has to be allocated in 
increments or multiples of OC-3.  The core dynamic scheduler remains in effect until a new 
schedule is deployed.  

2.1.  Ingress Processing 
We assume five traffic types are supported in the proposed optical core router:  

 

TDM traffic 

 

the equivalent of circuit-switched or constant bit rate traffic; 

 

MPLS traffic  flow based core IP traffic for traffic engineering;   
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Figure 1. Optical router architecture  

Traffic enters the optical router through a port in the ingress edge. An ingress port will either 
support TDM traffic (TDM port) or IP traffic (Packet over SONET or POS port), but not both.  
Each ingress port maintains a set of input queues, one for each ordered pair (egress port, QoS 
class). There are four IP QoS classes, one each for MPLS, DFS1, DFS2, BE traffic. Under these 
assumptions, there are in total 64 (16 egress ports * number of QoS/port (e.g. 4)) input queues for 
each POS port. For a TDM port, only 4 input queues are maintained, which enables the TDM 
ingress port to transport to any of the 4 egress TDM ports. The incoming packets are inserted into 
one of the input queues for that ingress port, based on its egress edge/port address and its QoS 
index.  Figure 2 is the conceptualized diagram for the ingress POS port, which has three key 
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elements: input queues, traffic manager and port scheduler. Figure 3 gives the picture for ingress 
edge processing. For MPLS and IP traffic, the Packet Classifier identifies the destination edge 
and port, the QoS queue, and QoS parameters based on the built-in MPLS/OSPF routing tables. 
The MPLS and IP packets are then inserted into appropriate input queues based on the routing 
information and QoS index, while waiting to be scheduled through the core. The traffic manager 
periodically monitors all the input queues and collects necessary statistics for the port scheduler. 
Port scheduler consolidates the port statistics and sends them to the edge and core schedulers.  
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Figure 2.  Ingress POS port processing     
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Figure 3.  Ingress edge processing  

2.2.  Optical switch fabric 
The optical core is essentially a fast switching fabric using a 4-by-4 crossbar Time Division 
Multiplexing (TDM) switch with a fixed duration wave slot at 1 s. It creates a virtual fully 
connected mesh between ports by periodically reconfiguring the core to allow exchange of data 
from one ingress port/edge to another egress port/edge, as shown in Figure 4.   Each edge sends a 
payload of no more than 1250 bytes on every wave slot. The packet transmission from all ingress 
ports/edges is synchronized with the switching cycle of the space switch fabric in the core so that 
the data is switched to the appropriate egress ports without any contention in the core.  Each 
egress edge has a copy of the current schedule and uses it to route all received traffic to the 
appropriate egress port within that edge.    
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3.  Scheduler Design 

The scheduler is the central brain of the entire system. The proposed scheduler provides a 
schedule that will serve the highest priority traffic available and guarantee that there is no 
starvation and no lock-out during switching. Since traffic patterns change over time, the scheduler 
must also adapt to these changes.  A new schedule is created when there are new TDM/MPLS 
connections accepted or when the current schedule pattern does not perform satisfactorily any 
more. When the core scheduler determines that a new schedule is needed, it solicits the traffic 
demands from each ingress port. The scheduler computes and deploys a new schedule based on 
the value and urgency of each port-to-port connection. The proposed dynamic scheduling 
procedure can be described conceptually as a two-state scheduling operation shown in Figure 5. 
In steady state, the existing schedule pattern will be repeated as long as the performance of the 
schedule remains sufficient.  
The proposed scheduler design is based on the following two-phase algorithm:  

 

Step 1: Wave Slot Definition (WSD) determines the best set port-to-port connections to 
make during a fixed scheduling cycle.  

 

Step 2: Wave Slot Assignment (WSA) determines the ordering and timing of wave slots 
for the schedule that guarantees no blocking in the core. 

The WSD phase (optimal or heuristic) determines the set of port-to-port connections, while the 
WSA phase defines the scheduling frame of individual connections.    
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Figure 5.  Scheduling state diagram  

3.1.  WSD Optimization Model 
The problem of determining a dynamically changing schedule can be formulated as a Linear 
Integer Programming problem. At ingress POS port i, all the input queues destined to the same 
egress port j (in total there should be 4 such queues per POS card) can be virtually consolidated 
into one queue, indexed by virtual queue (i, j). The virtual queue is computationally re-segmented 
into units at size of 1250 bytes, with each 1250 bytes traffic defined as a payload. Assume the 
given QoS value for type m traffic is qm, m=1,...,4.  Then the total QoS value for a type m payload 
is 1250* qm.  Let Vijk represent the QoS value of sending the k-th payload of the virtual queue (i, 
j). The optimal schedule with the blocking restrictions can be represented mathematically as a 
Linear Integer Programming (LIP) problem.   

Parameters:   
I: the set of ingress ports; 
J: the set of egress ports (|I|=|J| in our model); 
U: the number of wave slots allocated to each port; 
Kij: the set of payloads in the virtual queue (i, j); 
vijk: QoS value for the k-th payload of the virtual queue(i. j).  
Decision Variables:  
xijk = 0  if no connection is made for the k-th payload of the  
           virtual queue (i, j) during the scheduling cycle. 
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       = 1  otherwise. 
The ILP model: 

1.or  0: 

max
Ii

ijk

Jj Kk
ijk

Ii Kk
ijk

Jj Kk
ijkijk

x

IiU     x      

JjU     xs.t.  

xv

ij

ij

ij

 

For the router configuration given in Section 2, we have I = J = U=16.  

The solution to this LIP model will: 

(i)  Create port-to-port connectivity in an optimal way such that  maximal total QoS values will 
be achieved. 

(ii)  Assign at most 16 wave slots to each ingress port,  hence 64 wave slots to each ingress edge 
for a scheduling cycle. 

(iii) Assign at most 16 wave slots to each egress port, hence 64 wave slots to each egress edge for 
a scheduling cycle.   

The ILP problem above is a unimodular model that has integrality properties [15].  In other 
words, there exists an integer optimal solution to the noninterger linear model that relaxes the 
integer requirements, i.e., 0 

 

xijk

  

1. The detailed proof of integrality property is provided in the 
Appendix. Like any other pure Linear Programming models, the WSD optimization model is not 
NP-Complete. To further study its computational complexity, we have the following Theorem 1.   

Theorem 1: The WSD optimization problem is equivalent to a Weighted Bipartite Matching 
Problem (Assignment Problem in Operations Research) with 2U|I| nodes and (U2|I|)2 acres.  

The proof and an example are presented in the Appendix.  

Though a polynomial-time algorithm can provide the optimal solution, the computational 
complexity of the WSD optimization problem is O(U3|I|3) if Dijkstra s shortest path algorithm is 
applied [15] to solve the equivalent Weighted Bipartite Matching Problem. Solving for the 
optimal schedule is too time-consuming and is not real-time applicable, especially when the 
router size grows. To address the need for a faster scheduler, we define a heuristic approximation 
to the ILP model in the following discussion.  

3.2.  WSD frozen heuristic algorithm 
This algorithm constructs a schedule that transmits the highest-valued traffic possible on a port-
by-port basis. It differs from the more complex and time-consuming optimal algorithm, which 
chooses the overall highest-valued schedule and solves a global maximization problem.  Though 
not yielding an optimal solution, the heuristic algorithm is fast and provides a good schedule 
most of the time.  

The heuristic algorithm uses the same traffic demands to determine a high-priority schedule. At 
the first iteration, the algorithm considers the 16 highest priority payloads from each ingress port. 
TDM flows or CAC based MPLS flows are treated with the highest priority. For example of 
U=16, 16 payloads from each ingress port results in an average of 16 payloads per egress port.  If 
the first iteration results in exactly 16 payloads for each egress port, the schedule is complete.  
More likely, however, some egress ports will be assigned more than 16 while others will be 
assigned fewer than 16.  For each egress port with more than 16 payloads, retain only the highest-
valued 16 and delete the remaining payloads.  Now all ingress and egress ports have either 16 or 
fewer payloads assigned. Every ingress/egress port with exactly 16 payloads is frozen : no 
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payload will be added into or removed from a frozen port. Further more, the payloads associated 
with frozen ingress and egress ports are also frozen.  Thus, a frozen payload could be assigned to 
the following ingress and egress port combination:  

(i)   a frozen ingress port + an unfrozen egress port;  

(ii)  an unfrozen ingress port + a frozen egress port; 

(iii) a frozen ingress port + a frozen egress port.  

Now, the algorithm reaches the end of the first iteration. At the end of each iteration, check if all 
ports have 16 payloads assigned.  If so, the schedule is complete.  If not, perform the next 
iteration.  In the new iteration, we add the highest-valued payloads among the non-frozen 
payloads to the unfrozen ingress ports to bring the total, including the frozen payloads, up to 16. 
Then repeat the actions for the egress ports introduced before.  

Theorem 2: The algorithm must freeze at least one egress port and/or one ingress port after each 
iteration.  Therefore, it is guaranteed to end within finite steps.  

Proof:  We assume input queue always has traffic to send; thus there will be no empty wave slots 
in the schedule.  If this is not true, we just insert empty payloads to fill up the scheduling frame. 
Assume there are n unfrozen ingress ports and m unfrozen egress ports at an iteration. Initially, 
n=m=16. The ingress side has the same number of frozen payloads as the egress side at any 
iteration because any payload is indexed by an ingress port and egress port pair. At the beginning 
of each iteration, we add new payloads with the highest QoS values to bring the total payloads, 
including the frozen payloads, up to 16 for each unfrozen ingress port. All the new payloads can 
only go to non-frozen egress ports. Thus, 16 payloads from each ingress port result in an average 
of 16 payloads per unfrozen egress port.   So at least one unfrozen egress port can be frozen at an 
iteration. 

 

The flowchart for the heuristic algorithm is shown in Figure 6.  

Start

Receive demand  reports 
from each ingress port

Compile the list
of V ijk s for each port 

Select top 16 payloads 
from each ingress port

All egress ports have
16 connections? Peeling process

Remove excess connections from
over-subscribed egress ports. Freeze all

Ingress/egress ports with 16 connections. 

Receive additional demand reports
from the unfrozen ingress ports 

end

Yes

No

Start

Receive demand  reports 
from each ingress port

Compile the list
of V ijk s for each port 

Select top 16 payloads 
from each ingress port

All egress ports have
16 connections? Peeling process

Remove excess connections from
over-subscribed egress ports. Freeze all

Ingress/egress ports with 16 connections. 

Receive additional demand reports
from the unfrozen ingress ports 

end

Yes

No 

Figure 6. Frozen Heuristic Algorithm Flow Chart  

We provide an example here to further explain how the frozen heuristic algorithm works. 
Suppose there are three ports, and each port can make a single connection during a scheduling 
cycle (U=1).  Table 1 identifies the ranked values (Val) and the egress port (EP) for three 
different offered payloads for ingress ports 1, 2, and 3.  Note that the offers are ranked in the 
order of QoS values from each ingress port.  
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Offer 1 Offer 2 Offer 3 Ingress 

Port Val

 
EP

 
Val

 
EP

 
Val

 
EP

 
1 17 1 12 3 12 2 
2 20 2 19 1 10 3 
3 25 2 23 3 10 1 

 

Table 1.  Offered Traffic Demands  

The first demand report will offer: 

(i)  1 payload from ingress port 1 to egress port 1 with value 17, 

(ii) 1 payload from ingress port 2 to egress port 2 with value 20, 

(iii) 1 payload from ingress port 3 to egress port 2 with value 25;     

The frozen algorithm will accept ingress port 1 to egress port 1 connection and ingress port 3 to 
egress port 2 connection. It then freezes ingress ports 1 and 3 and egress ports 1 and 2 (Figure 
7.a) with all payloads associated with them.  The only remaining available connection is port 2 to 
port 3 with a value of 10 (Offer 3) for a total value of 52 (Figure 7.b) 
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Figure 7.  An example of frozen algorithm  

Since WSD frozen heuristic algorithm can at least freeze U connection at each iterations, there 
are at most |I|=|J| iterations. Therefore, the computational complexity is O(U2|I|) and is much 
lower than the optimization algorithm based on the equivalent Weighted Bipartite Matching 
Problem, which runs O(U3|I|3) time. 

3.3.  WSD non-frozen algorithm 
Freezing the ports early may prevent moderate valued connections from consideration. The 
problem is even more apparent in certain hot spot conditions. Consider a simple hot spot 
example In Table 2, where each port will support only two connections (U=2) for a schedule, i.e., 
a schedule cycle only consists of two wave slots. The value of the initial two wave slots (Offer 1 
and Offer 2) from the egress port view is:  75 units to EP 1, 370 units to EP 2 (the hot spot), and 
zero units to EP 3 in Figure 8.  For this example, the frozen algorithm will produce a schedule 
with a total value of 295, while the non-frozen solution will have a higher value of 370. 

Ingress 
Port 

Offer 1 Offer 2 Offer 3 Offer 4 

 

Val EP Val EP Val EP Val EP 

1 90 2 65 1 20 3 10 2 
2 100 2 85 2 80 1 5 3 

3 95 2 10 1 9 3 8 1 

 

Table 2.  Hot Spot at Node 2  
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Figure 8.  Example of Hot Spot Traffic  

To address the hot spot problem, the non-frozen algorithm does not freeze the ports with U 
assigned payloads so that they can be improved at later iterations. However, any payloads that 
have been eliminated because of over subscription on an egress port will not be reconsidered as 
a candidate for the future iterations.   

At the end of each iteration, unless all ingress and egress ports have U connections, the algorithm 
proceeds to the next iteration by including the highest QoS value payloads not yet considered to 
bring up the total connections to U to each ingress whose number of assigned connection is less 
than U.  These new offered connections may be targeted to egress ports that currently have U 
connections from the prior iteration. This operation could replace some of the earlier accepted 
connections with higher valued payloads. The WSD phase of the scheduling algorithm is 
considered to be complete if all ports have U connections or if no candidate connections are 
available at any of the undersubscribed ingress ports. The algorithm then proceeds to the WSA 
algorithm. Since there are a finite number of candidate connections at each ingress port, and each 
iteration at least freezes one port, the algorithm is assured to converge.  The non-frozen algorithm 
will return either the same algorithm as the frozen algorithm, or a better one. This does not imply, 
however, that the non-frozen schedule will necessarily result in the optimal solution. Though the 
non-frozen algorithm in general takes more time than the frozen algorithm, its worst case 
computational complexity is still O(U2|I|).  

To further explain how the non-frozen heuristic algorithm works, we use the same example in 
Table 1 to compare the non-frozen algorithm with the frozen one.  Though the non-frozen 
algorithm will begin the same assignment as the frozen algorithm, it will not freeze the ports that 
have U assigned connection (see Figure 9.a), but it will remove the connection from ingress port 
2 to egress port 2 from the demand report because of oversubscription at egress port 2. In the 
second iteration as shown in Figure 9.b, the connection from port 2 to port 1 is allowed to replace 
the prior ingress port 1 to egress port 1 connection. The replacement is not an option under the 
frozen algorithm. This action now frees ingress port 1 to define a new connection.  In the third 
iteration, ingress port 1 offers a payload of value 12 to egress port 3, which results in a total value 
of 56, higher than the value of 52 from the frozen algorithm in Figure 7.  
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Figure 9. Non-Frozen Algorithm Results  
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With complete information, the optimal solution to this problem could be determined using the 
traditional algorithms for the equivalent Bipartite Marching Problem.  The optimal solution to the 
example of Table 2 is illustrated in Figure 10 and has a higher objective function value than either 
solution above. In other words, neither the frozen nor the non-frozen algorithm provides the 
optimal schedule. They, however, produce a good approximation with a smaller amount of 
computational time. 
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Figure 10. Optimal assignments of wave slots 

3.4.  WSA algorithm  
The heuristic and optimal algorithms create the port-to-port connections in a scheduling cycle.  
They do not, however, spread the connections into wave slots so that the following edge-to-edge 
restrictions are satisfied: 

(i)  During one wave timeslot, no more than one ingress edge (port) can be connected to an egress 
edge (port).  

(ii) During one wave slot, an ingress edge (port) cannot be connected to more than one egress 
destination edge (port).  

Thus the existing connections need to be further distributed into 64 wave slots that satisfy the 
above constraints.  The WSD process will enforce these port and edge constraints. Notice that 
edge-to-edge restriction satisfaction implies port-to-port restriction satisfaction, not vice versa. 
Thus the port-to-port connectivity is first consolidated to its edge-to-edge equivalence.  The port-
to-port connectivity is expressed as a 16-by-16 matrix C, whose element C(i,j)  represents the 
number of connections from port i to port j during a given scheduler cycle.  Each row (column) of 
C adds up to 16. By combining port-to-port connections into edge-to-edge connections, we form a 
4-by-4 edge connectivity matrix A, whose element A(i,j) represents the number of connections 
from edge i to edge j during a given scheduler cycle.  Each row or column of A adds up to 64. 

The WSA process begins by splitting the matrix A into two matrices A1 and A2, each having the 
same dimension as A and with rows and columns adding up to 32. The same WSA process is then 
applied to the resulting 2 matrices, then to 4, 8, 16, 32 matrices.  There are 6 separate and 
independent WSA iterations to produce the final 64 permutation connectivity matrices. For any 
WSA action n (i=1,2 6), the number of total resulting matrices is 2n and the rows (columns) of 
each of the 2n matrices add up to 64/2n.  Thus the summation for each row (column) is 1 for each 
of the 64 matrices at the final step, which imposes the restriction that one ingress (egress) edge 
can only be connected to one egress (ingress) edge within that wave slot. The 64 permutation 
matrices represent 64 wave slots and indicate in the time domain how the connections are 
established. The flow chart for the detailed WSA algorithm at iteration n is shown in Figure 11, 
which elaborates on how edge matrix A  is successfully divided into two matrices A1  and A2 . 

(i) If there is an even number of connections from edge i to edge j (e.g. 2a,) in A matrix, then 
there will be a connections in each half of the scheduling cycle A1 and A2 .  In another word, 
if A (i, j) = 2a, then A1 (i, j)  =A2 (i, j)= a. 

(ii) If A (i, j) = 2a+1, then A1 (i, j)= A2 (i, j) = a. There will be (2a+1)/2 (integer division) 
connections in each half of the scheduling cycle.  

(iii) The remainders of the divisions from step 2 form a remainder matrix B of 0s and 1s, i.e., 
B=A -A1 -A2 . Each row/column of B adds up to an even number. The 1s of matrix B are 
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then distributed back to the two halves of the scheduling cycle A1 and A2 by alternately 
assigning 1s to either half of the scheduling cycle over Eulerian Circuits [13] found over the 
remainder matrix B. The procedure will guarantee that each row or column of A1 and A2 
adds up to 64/2n. 
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Figure 11. WSA Algorithm Flow Chart  

     The following example further explains how WSA algorithm works. Table 3 gives an example of 
an A matrix that results from the WSD (either frozen or non-frozen) process. In this example we 
assume there are 4 ingress/egress edges. One scheduling cycle consists of 4 wave slots.  As 
introduced in the WSA algorithm, A(i,j) represents the number of connections from ingress edge i 
to egress edge j during  one scheduler cycle. For this example, during one scheduling cycle  there 
are 2 connections for the edge pair (1,1), 0 for edge pair (1,2), 1 for edge pair (1,3), 1 for edge 
pair (1,4), 1 for edge pair (2,1), etc. However, matrix A does not tell when these connections can 
happen during a scheduling cycle in order to satisfy the edge-to-edge restrictions. WSA process 
splits matrix A into 4 permutation connectivity matrices, A1, A2, A3, A4, with each of them 
corresponding to one wave slot, as shown in Table 4.  For example, A1 tells that the following 
port-to-port connections can be supported simultaneously in one wave slot without violating 
edge-to-edge restrictions:  (1, 1), (2, 2), (3, 3), (4, 4).  Since all 4 matrices are permutation 
matrices, one ingress edge can only communicate one egress edge in one time slot during the 
scheduling cycle. Thus edge-to-edge restrictions are enforced by WSA process.   

A matrix
ingress/egress 

# 1 2 3 4
1 2 0 1 1
2 1 2 1 0
3 0 1 2 1
4 1 1 0 2

 

Table 3.  An  A matrix from WSD process  
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A1 matrix A2 matrix
ingress/egress 

# 1 2 3 4
ingress/egress 

# 1 2 3 4
1 1 0 0 0 1 0 0 1 0
2 0 1 0 0 2 1 0 0 0
3 0 0 1 0 3 0 0 0 1
4 0 0 0 1 4 0 1 0 0

A3 matrix A3 matrix
ingress/egress 

# 1 2 3 4
ingress/egress 

# 1 2 3 4
1 1 0 0 0 1 0 0 0 1
2 0 1 0 0 2 0 0 1 0
3 0 0 1 0 3 0 1 0 0
4 0 0 0 1 4 1 0 0 0

 

Table 4. Results from WSA process: A1- A4 matrices 

4. Simulation Modelling and Performance Evaluations 

4.1.  Traffic Modeling 
The described optical core router is able to support different traffic types. We suppose that one or 
more line cards can be dedicated to TDM traffic for each edge, and the rest line cards to Packet 
over SONET (POS) traffic. A TDM (or POS) ingress port only communicates to egress TDM (or 
POS) ports. Composition of traffic over each ingress POS port is distributed among the types of 
MPLS, DFS1, DFS2, and BE, and the total traffic added together is 100%.  

The various traffic types are treated as follows: 
(i)  The interarrival time for TDM flow requests on each TDM port is Poisson distribution with an 

average rate of TDM ms. Holding time is exponential distribution with a mean of TDM ms. A 
TDM flow that cannot fit without blocking is ever rejected. Each TDM flow is generated at a 
rate of OC-12.  For the results presented in this section, TDM =20 ms and TDM =100 ms.  

(ii)  MPLS connection requests are Poisson distributed with an average rate of MPLS ms, and the 
average session holding time is exponentially distributed with a mean of MPLS ms.  For the 
results reported in this section, MPLS =10 ms and MPLS =100 ms. The MPLS connections 
generate IP packets with specified rate in the appropriate self-similar patterns. Individual 
MPLS Label Switched Path (LSP) is given an average rate of 250 Mbps, a peak rate of 430 
Mbps and is characterized by a Hurst parameter of 0.7, to match the router bandwidth 
configuration. 

(iii) For Diffserv and Best Effort traffic, only packet level modelling is needed.  DFS1, DFS2, 
and BE packets are generated in self-similar patterns with a Hurst parameter of 0.7.      

The POS packet size distribution is given in Table 3 [14]. In the simulation, the QoS values per 
byte for different traffic types are differentiated as follows:  MPLS: 8; DFS1: 4; DFS2: 2; BE: 1.   

Packet Size (Bytes) Percentage 
40 55 
52 10 

576 20 
1500 15 

 

Table 5. POS packet size distribution  

4.2.  Performance evaluations  
Simulations and analysis have been conducted to evaluate the performance of the proposed 
scheduling algorithms in the core optical router architecture introduced in Section 2. There are 4 
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ports per edge and 4 edges in total. Each edge has one TDM card and 3 POS cards. Thus there are 
4 TDM card and 12 POS cards in the router under study. The simulations have been performed in 
OPNET by assuming various traffic scenarios. In the results reported in this section, composition 
of traffic over each ingress POS port is: 40% of offered traffic for MPLS; 20% for DFS1; 20 % 
for DFS2; 20% for BE. The destination of a TDM flow is uniformly selected among 4 TDM 
egress ports. The probability distribution of the traffic from a particular ingress POS port is as 
follows: 75% of the traffic from a particular POS ingress port will be distributed uniformly to 2 
H-POS egress ports, 20% will be distributed uniformly to the other 4 M-POS egress ports and 5% 
will be distributed uniformly to the remaining 6 L-POS egress ports.  The above distribution 
comes from the assumption that traffic tends to go to few popular destination ports. Small 
background/best-effort traffic (5%) is distributed uniformly (e.g., emails) to all 12 POS egress 
cards. In order to maintain similar traffic loads on 12 POS egress ports, the connection 
distribution will be rotated over ingress ports, as shown in Figure 12. The rotation eliminates the 
effects of traffic congestion because of the traffic distribution, so the simulations can evaluate 
scheduling performances better.  All patterns are rotated, i.e., ingress port i distribution becomes 
ingress port i+1 distribution, once every 30 ms. The variations on distribution shown in Figure 12 
is introduced for the purpose of studying the adaptability of the scheduling algorithm to changes 
in the traffic patterns. 
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Figure 12. POS Traffic distribution  

Figure 13 shows that, at the steady state, the offered load to the system and the throughput are 
both 23.5 Gbps by using non-frozen heuristic. Among the 23.5 Gbps, 8.5 Gbps (85% of 10 Gbps 
total TDM capacity) is TDM traffic and, 15 Gbps (50% of 30 Gbps total POS card capacity) is 
POS traffic.  Theoretically TDM could achieve 100% throughput or 10 Gbps rate. The actual 
throughput is only 8.5 Gbps because a new request of each ingress TDM port has a random TDM 
destination.  As more of the 4 4=16 available TDM connections are allocated, new requests are 
less likely to be accepted.  
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Figure 13.  Overall Offered Load And Throughput 
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The non-frozen heuristic schedulers are evaluated in three slightly different versions: classical 
scheduler (CLS), scheduler with limited average rate allocation (LARS) and scheduler with 
limited peak rate allocation (LPRS). 
(i)  CLS does not reserve any bandwidth for any POS traffic. CLS is slow in reacting to new 

traffic since entire schedule computation process takes about 2 ms or 32 scheduler cycles. 
(ii)  LARS reserves average rate equivalent wave slots for each MPLS flow before acceptance. 

The average MPSL flow rate is 250 Mbps. Notice that two wave slots actually correspond to 
a bandwidth of 312.5 Mbps. Any other traffic on the same port-to-port combination may 
temporarily use the two wave slots in periods of low MPLS traffic.  Extra MPLS traffic 
beyond 312.5 Gbps will be queued and compete for the bandwidth as best effort traffic. 

(iii) LPRS is similar to LARS, with the difference that the guaranteed number of wave slots 
covers the peak rate of MPLS flows. We assume the peak rate is 430 Mbps, which requires 3 
wave slots.  Unused reserved bandwidth can be temporarily utilized by other POS traffic.   

Figure 14 and Figure 15 display the steady state average delay and delay distributions for MPLS 
traffic under the three versions of the scheduler.  As expected, among these schedulers, LPRS 
achieves the lowest average delay at 40.5 s and smallest 90 percentile at 73 s, since peak rate 
bandwidth is reserved ahead of time. LARS, on the other hand, results in highest average delay at 
78 s and highest 90-percentile delay at 180 s. LARS guarantees MPLS bandwidth based on 
average rate, and the remaining traffic is considered as best effort. Thus, the delay is pushed 
higher by the portion of best-effort treated traffic. CLS results in an average delay of 43 s and a 
90 percentile of 75 s. Although CLS always considers MPLS traffic the highest priority among 
POS traffic, it is slow in reacting to traffic changes.  Thus CLS experiences higher average delay 
than LPRS does.  
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Figure 14.  Steady state average delay for MPLS  
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Figure 15. CDF for MPLS delay distribution  
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Figure 16. Steady state average delay for DFS1 traffic   
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Figure 17. CDF for DFS1 traffic  
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In Figure 16 and Figure 17, DFS1 traffic experiences lowest average delay at approximately 1200 
s and lowest 90 percentile at 2950 s by LARS. LARS limits the bandwidth for MPLS traffic 

and consequently leaves more room for lower priority traffic such as DFS1.  Although LPRS 
reserves peak rate equivalent bandwidth for MPLS, unused reserved bandwidth can be 
temporarily utilized by other POS traffic of the same port-to-port combination. LPRS achieves 
very similar results to those of LARS with a slightly higher average delay and 90 percentile. 
However, CLS, which always favours TDM and MPLS traffic, degrades DFS1 traffic 
performance greatly with an average delay at 4050 s and 90 percentile at 10,500 s.  This 
performance degradation is mainly caused by the long scheduler computation time and 
oscillations on bandwidth allocation. In fact, a schedule is in effect for approximately 2,000 s or 
about 32 scheduling cycles. This is the amount of time we estimated for computing a new 64-
wave-slot schedule. DFS2 and BE traffic experience very similar performance trends as 
compared to DFS1 traffic.  Table 6 summarizes the simulated behaviour of the 4 types of POS 
traffic under the 3 versions of the scheduler.   

Traffic type and delay: s Classical

 

LPRS LARS 
Average 44 40.5 78 MPLS 

90 percentile  75 73 180 
Average 4,050 1,210 1,200 DFS1 

90 percentile 10,500 3,000 2,950 
Average 5,400 2,370 2,350 DFS2 

90 percentile    12,000 4,500 4,400 
Average  7,550 3,800 3,700 BE 

90 percentile 15,500 6,750 6,500 

 

Table 6. POS delay performance under 3 schedulers  

Figure 18 shows the average port connectivity for POS ports, i.e., the number of egress ports 
reached during 16 wave slots of a port schedule, averaged over all 12 POS ports. It is an indirect 
indication of how well connectionless traffic, i.e., DFS1, DFS2, BE, is served by the scheduler. 
Higher connectivity means more queues can be served during a scheduling cycle, thus causing 
smaller average delay and jitter. LARS achieves slightly higher connectivity than LPRS, and both 
clearly outperform CLS with values around 7.5 out of 12, as opposed to 4.5 out of 12. Small 
connectivity of CLS leads to oscillating behaviour and longer delay/jitter, as apparently shown in 
results presented earlier. 

We assessed the accuracy of the heuristic through the ratio of the total values achieved by optimal 
and heuristic schedulers.  
To evaluate the algorithms, we generated 250 random instances of traffic to fill the set of demand 
reports for each port. For each instance we used the same demand report data to compute: 

 

M, the value of traffic carried through the switch as determined by an optimal solution to the 
integer programming problem presented earlier; and  

 

M , the value obtained through application of the heuristic algorithm (frozen or non-frozen).  

The assessed accuracy is expressed as the ratio of M /M.   As shown in Figure 19, when 
compared with the frozen algorithm, the non-frozen solution typically demonstrated 5 to 10 
percent improvement.  In the extreme hot spot cases where the frozen algorithm produced a 
solution in the range of 10% of the optimal solution, the non-frozen algorithm improved the 
solution to about 85% of the optimal solution. The improvements of the frozen algorithm 
however came at a cost of 33% to 48% increase in execution time compared with the non-frozen 
algorithm.  Both heuristic algorithms need much less computation time than the optimal 
algorithm. The calculation time for the optimal schedule is approximately 125 ms compared with 
2.5 ms for the non-frozen heuristic algorithm in C for the 4 edge 16 port optical system. With the 
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scale of the system increase, the computation time required for the optimal scheduler is expected 
to go up much faster than the heuristic algorithms do, which further limits the possibility of 
optimal algorithm implementation in practice.  
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Figure 18.  Average port connectivity comparison  
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Figure 19.  Comparison of Heuristic and optimal solutions 

5.  Conclusions 

This paper addresses a new scheduling problem in the high capacity core optical switching 
systems for heterogeneous traffic. The scheduling problem is formulated as a Linear Integer 
Programming model. Two heuristic algorithms, frozen and non-frozen, are developed to solve the 
problem with much less time than optimality algorithm. Due to the large capacity of the system 
and the long computation time of the scheduler, bandwidth efficiency and smooth transitions 
between the consecutive schedules are very critical to the traffic performance such as delay and 
jitter. The heuristic scheduling algorithms are evaluated in three different versions: classical 
scheduler (CLS), limited with average rate scheduler (LARS) and limited with peak rate 
scheduler (LPRS).  For the investigated core optical system, bandwidth reservation ahead of 
traffic arrival for high priority traffic is very beneficial to QoS support for all traffic types in the 
system.   
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Appendices  

1.  The poof of integrality property of the optimization model 
Proof: Without loss of generality, we assume a fractional optimal solution with x111 as a fraction.  
Since x111 is a fraction, there must be at least another fraction of x1jk (j 1 and/or k 1), say x122,  to 

satisfy the constraints that   
Ij Kk

ijk

j

x
1 

must be an integer. Similarly if x122 is a fraction, there 

should be another fractional connection xi2k (i 1 and/or k 2). Therefore, a factional cycle can be 
found.  If we  assume U=2,  a fractional cycle example can be x111=0.2, x122=0.8, x223=0.2, 
x211=0.8, in which all numbers are fractions. If v111+v223 

 

v122+v211, the new feasible solution of 
x111=1, x122=0, x223=1, x211=0 and the same values for all other xijk has at least the same objective 
function value as the original fractional solution. If v111+v223 

 

v122+v211, another feasible solution 
of x111=0, x122=1, x223=0, x211=1 and  the same values for all other xijk is at least as good as the 
original fractional solution. With more ports, the new constructed feasible solutions may still 
have fractional numbers. However, for any fractional solution, we can always find a solution with 
more integer numbers that is better or the same. Thus, an optimal integer solution can be found to 
the linear relaxed model. Obviously it is also the optimal solution to the ILP.         

  

2.  Proof and example for Theorem 1.  
Proof: WSD optimization model can be trasformed into a Weighted Bipartite Matching Problem 
(Assignment Problem) by duplicating each ingress and exgress port U times and having one arc 
from each orgin node to each destination node. The benefit on the arc from ai

m to bj
n is vijm.  

For example, assume a WSD optimtiztion problem with |I|=|J|=U=2 and Kij=2 (if Kij=1, we can 
have Kij=2 by letting vij2=0. The WSD optimization model can be represented by a graph of the 
Weigted Bipartite Matching Problem as follows.           

The benefit on the arc from ai
m to bj

n is vijm. In the graph, we duplicate each ingress ai and egress 
port bj twice. In the Weighted Bipartite Matching problem, only one arc can be chosen for each 
node, so there are exactly U=2 arces (loads) for each original port. Since both U=2 vijm are 
connected to the new node ai

m, at most one vijm is included in the solution. Therefore, the 
developed Weighted Bipartite Matching problem is equivalent to the WSD optimizaiton model.             
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