
Effects of High-Level Discrete Signal Transform Formulations on
Partitioning for Multi-FPGA Architectures

Rafael Arce-Nazario, Manuel Jimenez and Domingo Rodriguez
Department of Electrical and Computer Engineering, University of Puerto Rico, Mayagüez, PR

{rafael.arce,mjimenez,domingo}@ece.uprm.edu

1 Introduction

The achievement of effective implementations to
multi-FPGA architectures is greatly dependent on the
process of partitioning. Although several automated
high-level partitioning (HLP) methods have been re-
ported [2], most of them are designed to solve general
partitioning problems, and tend to apply generic local
optimization techniques that miss out on alternate for-
mulations that become apparent only with knowledge of
the algorithm’s functionality. The algorithmic formula-
tion of discrete signal transforms (DST), especially that
of the DFT, has been extensively studied. Automated
computational algebra platforms for the algorithmic ma-
nipulation of fast transform algorithms have been pro-
posed, as well as automated methods to optimize DST
implementations to general purpose processor platforms
[1]. However, these methods have yet to be success-
fully adapted to automated partitioning methodologies
for dedicated distributed hardware platforms.

We hypothesize that the integration of algorithmic
manipulation of DSTs into the partitioning strategy
should result in a more focused exploration of the de-
sign space, and consequently, better implementations.
To this end, we propose a methodology that incorpo-
rates formulation-level transformations into the parti-
tioning optimization loop. Our methodology performs
such transformations on formulations of the DST algo-
rithm using a Kronecker Products Algebra (KPA) frame-
work. This framework was chosen because of its rep-
resentation compactness and its ability to induce refor-
mulations on DSTs at the algorithmic level, which con-
veniently maps the level of abstraction sought for our
methodology. Several of the components of our method-
ology have been implemented, and we have used them
to conduct experiments to study the effect of DST for-
mulation on partitioning results. Besides allowing us to
define heuristic rules for our partitioning methodology,
our tools and experiments could be used by designers to
choose DST formulations targeted to established multi-
FPGA topologies or to design cost-effective communi-

cation topologies for specific DSTs.

2 Partitioning methodology

Figure 1 shows a conceptual map of our partitioning
methodology. The inputs are (1) a DST specified as a
KPA formulation and parameterized at least by the res-
olution of its points, and (2) a high-level specification of
the target architecture, which includes the number and
logic capacity of the devices and their connection topol-
ogy.

Figure 1: Proposed partitioning methodology.

The core of our methodology is an optimization loop
that performs exploration in the space of equivalent for-
mulations and partitions using DST-specific transforma-
tions. This is accomplished by the interaction of sev-
eral processes. First, a component called the Kronecker-
to-Graph (KTG) tool converts the algorithmic formula-
tion to a coarse-grained dataflow graph (DFG) whose
nodes denote functional primitives. Each DFG node is
assigned a weight that depends on the estimated area of
its represented primitive. Then, a deterministic parti-
tioning/placement (P/P) algorithm is run on the DFG,
assisted by high-level area and communication estima-
tors. Our P/P algorithm is a communication-channel-
aware, k-way partitioning adaptation of the Kernighan-
Lin heuristic, which utilizes channel cost as the mini-
mization objective. Besides trying to optimize the parti-
tioning scheme for the current DFG, the P/P mechanism
outputs indicators that instruct the heuristic formulation
manipulator (FM) of what changes to perform on the

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

formulation to promote improved solutions. Both the
KTG and P/P components have been implemented. To
be able to close our methodology’s optimization loop,
we need to have an idea of the effect of formulation
properties on partitioning quality. We have conducted
several experiments to gain insight into these effects
and to see whether or not we can envision a strategy to
heuristically guide the optimization.

3 Experiments and Results

We conducted experiments to assess the effect of two
properties which can be controlled algorithmically on
DST formulations: the granularity of its operands and
the permutations between them. A range of sizes for five
common FFT formulations where partitioned to target
architectures consisting of four and eight FPGAs con-
nected in linear array and ring topologies with crossbars.
For all the experiments we assumed that communication
through the crossbar has a latency cost twice that of the
neighbor-to-neighbor channels.

3.1 Effects of Granularity

General-purpose HLP methods rely exclusively on
graph properties (e.g. connectedness) or manual assis-
tance for clustering DFG nodes, which helps prune the
partitioning solution space. Our focus on a specific class
of algorithms allows us to use algorithm-specific prop-
erties to supplement such clustering techniques. In our
first experiment, we used the Cooley-Tukey factoriza-
tion formula to study the effect of granularity in the par-
titioning of FFTs. This formula states that if n = pm
then Fn = (Fp ⊗ Im)Tn,m (Ip ⊗ Fm)Pn,p, where Fn

represents a size-n DFT, In is an identity matrix, Tn,m is
a diagonal matrix of weights, and Pn,p is a stride permu-
tation matrix. The recursive application of this formula
was used to derive an exponential number of formula-
tions, each exhibiting different levels of granularity at
the computational stages of the transform. These for-
mulations where converted to DFG and partitioned to
measure the solution quality in terms of communication
cost. Table 1 summarizes our results by showing the for-
mulations that achieved minimum cost for each of the
FFT sizes. Abbreviations used for the formulations cor-
respond to the functional primitive sizes used at each
of the FFT stages. The effect of granularity is evident,
albeit for the general case we cannot easily establish a
correspondence between granularity scheme and qual-
ity of solution. The finest grained formulations do not
necessarily obtain the best results, so in many cases it
would be wise to avoid these formulations as they also
represent an increased exploration time.

Table 1: Granularity experiment results.
Array 4 Topology Array 8 Topology

Size Cost Min. Cost Form. Cost Min. Cost Form.
32 11 2,2,2,4∗ 32 2,2,2,2,2∗
64 22 2,2,2,2,4∗ 48 2,2,2,2,4

128 43 2,2,2,2,2,2,2∗ 92 2,2,2,2,2,4
256 86 4,4,2,2,4 132 4,2,2,2,2,4
512 171 2,2,2,2,2,2,2,2,2∗ 276 2,2,2,2,2,2,4,2

∗ For cases where multiple formulations achieved minimum cost we
show formulation with finest granularity.

3.2 Effects of Permutations

In an effort to reflect algorithm regularity onto its final
hardware implementation, the P/P process begins with
a balanced horizontal linear partition of the formula-
tion’s computational structure. Hence, inter-stage per-
mutations in the DFT formulations determine the initial
partition and are expected to affect final solution qual-
ity. To test this hypothesis, and possibly detect heuristic
strategies to be applied in the partitioning of FFT for-
mulations, we used our tools to partition several sizes of
five common FFT formulations. A representative exam-
ple of this experiment’s results is presented in Figure 2.
The graph shows the percent difference in solution cost
for various formulations on an architecture with four FP-
GAs connected in a linear array topology. Best results
where obtained when starting with formulation-aware
initial solutions, rather than randomly generated ones.
None of the formulations exhibit a consistent advantage
over others, even though some of them (e.g. Pease) be-
gin with higher-cost initial solutions.

 0

 5

 10

 15

 20

 25

 30

 35

 512 256 128 64 32 16

%
 d

iff
er

en
ce

 c
os

t

FFT Size

% difference costs for Array 4 topology
Stockham
T. Stock.
C. Tukey
G. Sande

Pease
Random

Figure 2: Permutation experiment results.

References

[1] M. Püschel, et al. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, 93(2):232–275,
2005.

[2] V. Srinivasan, S. Govindarajan, and R. Vemuri. Fine-
grained and coarse-grained behavioral partitioning with
effective utilization of memory and design space explo-
ration for multi-FPGA architectures. IEEE Trans. Very
Large Scale Integr. Syst., 9(1):140–159, 2001.

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

