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Abstract— This work deals with the development of a computa-
tional signal algebra framework for the modeling and simulation
of digital image interferometry processing applications, exploiting
the rapid prototyping capabilities of MATLAB with the network
computing capabilities of Java. 1

I. INTRODUCTION

The signal algebra is constructed by using the binary
two-dimensional cyclic convolution as the product operation
that turns a linear space of two-dimensional finite discrete
images into a linear algebra. Matrix representations of two-
dimensional cyclic convolution operations are represented as
block circulant matrices with circulant blocks. This is ac-
complished when finite discrete image object arrays, serv-
ing as inputs in the matrix-vector computation of the two-
dimensional cyclic convolution operation, are transformed into
one-dimensional column vectors using, both, lexicographic
and anti-lexicographic ordering. Special attention is given to
the algebra of cyclic correlations which is related to the algebra
of cyclic convolutions through the index reversal or reflection
operator.

Correlated digital interferometry (DCI) for imaging radars
deals with the use of signal correlation techniques to pro-
cess the phase information of digital image representations
of microwave imaging signals. Rapid prototyping of matrix
computations are offered by MATLAB which makes it ideal
for developing algorithms to model applications that usually
involve large data sets. This work takes advantage of the Java
Virtual Machine (JVM) offered by the MATLAB package to
create and run programs that create and access Java objects.

II. SIGNAL ALGEBRA FRAMEWORK

Given a finite set of finite signals, the linear signal algebra
over the field C is defined as a Hilbert vector space denoted
(V, +, ·) with an additional operation called a vector multipli-
cation or signal multiplication operation defined as follows:

∗ : V × V → V

(Vk, Vl) �→ ∗ (Vk, Vl) = Vk ∗ Vl = Vm (1)
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This signal multiplication operation has the following three
properties: Associative, Distributive with respect to vector
addition and Distributive Associative with respect to the
scalars.

The standard basis set of this signal algebra is the set
∆N ⊂ l (ZN0×N1), of N = N0×N1 complex signals defined
as

∆N =

⎧⎨
⎩

δ{k0,k1} : δ{k0,k1} [n0, n1] = 1; {k0, k1} = [n0, n1]

δ{k0,k1} [n0, n1] = 0; {k0, k1} �= [n0, n1]

⎫⎬
⎭

(2)

A. The linear algebra of cyclic convolutions of order N0×N1

over C

Given the vector space or signal space l (ZN0 × ZN1), we
turn this space into a linear algebra, which we call Signal
Algebra by introducing the following vector multiplication or
signal multiplication operation:

⊗
N0×N1

: l (ZN0 × ZN1) × l (ZN0 × ZN1) → C

(x, h) �→ ⊗N (x, h) = x ⊗N h = y (3)

1) Matrix representation of cyclic convolution operator⊗h
N0×N1

over l (ZN0×N1): The matrix representation of
cyclic convolution operator using anti-lexicographic ordering
with respect to the standard basis ∆N is:

HN =
[⊗h

N

{
δ{0,0}

} ⊗h
N

{
δ{1,0}

}
. . . ⊗h

N

{
δ{N0−1,N1−1}

}]
(4)

where δ{i,j} ∈ ∆N(⊗h
N

{
δ{k0,k1}

})
[n0, n1] = g{k0,k1} [n0, n1] =

=
∑
m1

∑
m0

δ{k0,k1} [m0, m1] h
[〈n0 − m0〉N0

, 〈n1 − m1〉N1

]
,

(5)
m0 ∈ ZN0 , m1 ∈ ZN1
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If {k0, k1} = [n0, n1] then,

g{k0,k1} [n0, n1] = h
[〈n0 − k0〉N0

, 〈n1 − k1〉N1

]
(6)

where n0, k0 ∈ ZN0 and n1, k1 ∈ ZN1

HN =
[

g{0,0} g{1,0} . . . g{N0−1,N1−1}
]

=

[
h

[〈n0〉N0
, 〈n1〉N1

]
...h

[〈n0 − N0 + 1〉N0
, 〈n1 − N1 + 1〉N1

]]
(7)

B. The linear algebra of cyclic correlations of order N0×N1

over C

Given the vector space or signal space l (ZN0×N1), we turn
this space into a linear algebra by introducing the following
vector multiplication or signal multiplication operation:

c©N : l (ZN0×N1) × l (ZN0×N1) → l (ZN0×N1)

(x, h) �→ c©N0×N1
(x, h) = x c©N0×N1

h = y (8)

1) Matrix representation of cyclic correlation operator
c©g

N0×N1
over N0 × N1: The matrix representation of cyclic

correlation operator using anti-lexicographic ordering with
respect to the standard basis ∆N is:

CN =
[

c©g
N

{
δ{0,0}

}
c©g

N

{
δ{1,0}

}
. . . c©g

N

{
δ{N0−1,N1−1}

}]
(9)

where δ{i,j} ∈ ∆N(
c©g

N

{
δ{k0,k1}

})
[n0, n1] = h{k0,k1} [n0, n1] =

=
∑
m1

∑
m0

δ{k0,k1} [m0, m1] g
[〈n0 − m0〉N0

, 〈n1 − m1〉N1

]

(10)
m0 ∈ ZN0, m1 ∈ ZN1

If {k0, k1} = [n0, n1] then,

h{k0,k1} [n0, n1] = g
[〈n0 − k0〉N0

, 〈n1 − k1〉N1

]
(11)

where n0, k0 ∈ ZN0 and n1, k1 ∈ ZN1

CN =
[

h{0,0} h{1,0} . . . h{N0−1,N1−1}
]

=

[
g

[〈n0〉N0
, 〈n1〉N1

]
...g

[〈n0 − N0 + 1〉N0
, 〈n1 − N1 + 1〉N1

]]
(12)

2) Hadamard Product Binary Operation over l (ZN0×N1):
This operation is defined as follows:

�N0×N1 : l (ZN0×N1) → l (ZN0×N1)

(vk, vl) �→ �N0×N1 (vk, vl) = v (13)

where,

v [n0, n1] = (�N0×N1 (vk, vl)) [n0, n1]

v [n0, n1] = (vk [n0, n1] , vl [n0, n1]) (14)

n0 ∈ ZN0 and n1 ∈ ZN1

3) Cyclic Reflection Operator or Cyclic Index Reversal
Operator over l (ZN ): The algebra of cyclic correlations is
related with the algebra of the cyclic convolutions through the
index reversal operator, which is defined as follows:

�N : l (ZN ) → l (ZN )

x �→ �N {x} (15)

Where,

(�N {x}) [n0, n1] = x(−) [n0, n1] = x
[〈−n0〉N0

, 〈−n1〉N1

]
(16)

The matrix representation of the cyclic reflection operator
�N using anti-lexicographic ordering with respect to the
standard basis is given by the following expression:

RN0×N1 =
[�N

{
δ{0,0}

} �N

{
δ{1,0}

}
. . .�N

{
δ{N0−1,N1−1}

}]
(17)

C. Cyclic Shift Operator over l (ZN0×N1) with respect to the
Standard Basis ∆N0×N1

The cyclic shift operator SN0×N1 over the space l (ZN0×N1)
with respect to the standard basis ∆N0×N1 is defined as
follows:

SN0×N1 : l (ZN0×N1) → l (ZN0×N1)

δk0,k1 �→ SN0×N1 {δk0,k1} = δ〈k0+1〉N0
,〈k1+1〉N1

(18)

The matrix representation of the shift operator SN using
anti-lexicographic ordering with respect to the standard basis
is given by the following expression:

SN0×N1 =
[
SN0×N1

{
δ{0,0}

}
. . . SN0×N1

{
δ{N0−1,N1−1}

}]
(19)

III. CORRELATED DIGITAL INTERFEROMETRY

Radar interferometry, as a correlation technique between
two images, is used to detect Earth surface changes produced
by phenomena such as landslides, earthquakes, and flash
floods. Figure 2 describes the proposed model for the Cor-
related Digital Interferometry and which is explained below.

Let G be the finite set of any finite signals, say G =
{Gi : Gi ∈ l (ZN0 × ZN1) , i = 0, 1, 2, ..., K − 1}.

The operation of basic interferometry between any two ele-
ment of G, say Gm, Gl is defined as the following Hadamard
product:

Gm �N Gl (20)

where N = N0 × N1

The operation of basic cyclic correlation between any two ele-
ments of G, say Gr , Gs is defined as the following Hadamard
product:

Gr c©NG∗
s = Gr �N �N (G∗

s) (21)
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where the symbol ∗ denotes conjugate operation.
By the Discrete Fourier Transform (DFT) properties we

can establish an isomorphism between the linear algebra
(l (ZN) , +, ·,⊗N , C), called the algebra of cyclic convolu-
tions and the linear algebra (l (ZN ) , +, ·,�N , C), called the
algebra of the Hadamard products. This isomorphism estab-
lishes the following duality between the object domain and
the spectral domain:

Fig. 1. Isomorphism between Linear Algebra of Cyclic Convolutions and
the Algebra of Hadamard Product

Correlated Digital Interferometry (CDI) is defined as the
cyclic correlation operation between any signals, that is:(

(G0 �N G∗
1) c©N

((
Gl �N G∗

l+1

)∗))
̂=

(
(G0 �N G∗

1) ⊗N �N

((
Gl �N G∗

l+1

)∗))
̂ (22)

and (
(G0 �N G∗

1) ⊗N �N

((
Gl �N G∗

l+1

)∗))
̂=

[
1/NĜ0 ⊗N Ĝ∗

1

]
�N �N [G∗

l ⊗N Gl+1] (23)

Where the symbol ̂ denotes DFT.

IV. DCI COMPUTATIONAL ENVIRONMENT

The conceptual model described previously has been im-
plemented in a computational environment supported by the
interfacing of MATLAB R© and Java, taking advantage in
the fact that the Java Virtual Machine of MATLAB R© can
interpret, create and access Java objects from the command
prompt of MATLAB R©.

In the Java side there is a disbributed system tool-
environment whose initial target is synthetic aperture radar
(SAR) imaging applications. This tool-environment allows a
given user to effect important image processing functions
such as to visualize, manipulate, improve, filter, detect edges,
and reduce the noise on SAR images. Also, this system has

the unique option of allowing end-users to add their own
customized algorithms as encapsulated operators to act on
elements resident on local or remote SAR images-servers on
a computer network. Now, special attention is being given to
modify the environment in order to incorporate modules for
the processing of DCI applications in distributed environments.

One of the important advantages of using Java is its
network friendliness. The Java core contains many features
that help us develop this network-based application because it
takes into account issues as framentation, replication, naming,
concurrency, failure, configuration and communication. In this
work is used the client-server paradigm. With the client-server
approach, multiple clients from a local or a remote machine
can access the same application at any time.

In the MATLAB R© side has been implemented the algo-
rithms of Cyclic Convolution Operator, Cyclic Correlation Op-
erator, Hadamard Product, Index Reversal Operator and Shift
Operator as was proposed in the model. Even MATLAB R©
offers rapid prototyping of matrix computations, however its
performance code does not support large data sets as SAR
images. In this way, we are developing for future applications
an interface for calling MATLAB R© from Java in order to
use a repository of algorithms that we have formulated and
that require to be executed in a distributed system.

V. CONCLUSION

This work has devoloped a computational signal processing
system for the modeling and simulation of Correlated Digital
Interferometry (CDI) operations. Interferometry operations are
prevalent in many scientific and engineering applications and
the modality of corralated interferometry establishes a duality
between the physical environment or object domain and the
spectral domain through a Fourier homomorphism. Signal
Algebra was instrumental in the formulation of the CDI theory.
A Java-based environment was developed to serve as an
interfaced between the CDI system and the application user.
Hardware implementations of basic CDI system is contem-
plated for environmental survaillance applications.
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