
An Assessment Of High-Level Partitioning
Techniques For Implementing Discrete Signal

Transforms On Distributed Hardware Architectures∗

Rafael A. Arce-Nazario, Manuel Jimenez and Domingo Rodrı́guez
Electrical and Computer Engineering Department

University of Puerto Rico, Mayagüez Campus
Mayagüez, Puerto Rico 00681-5000

Email: {rafael.arce, mjimenez, domingo}@ece.uprm.edu

Abstract— Partitioning is an essential step in the implementa-
tion of algorithms to distributed hardware architectures (DHAs)
such as multi-FPGA boards. While numerous approaches work-
ing at the structural level have been reported, techniques targeted
at higher levels are less common. Moreover, when dealing with
discrete signal transforms (DSTs), formulation-level partitioners
for DHAs have been largely neglected. In this paper, we introduce
a first approach towards a functionally-aware methodology that
could provide improved results for the high-level partitioning of
DSTs to DHAs. Our methodology has been devised through the
study of DST partitioning techniques for DHA-similar systems,
as well as general DST formulation techniques. An assessment
performed on discrete Fourier transforms has achieved as much
as 35% in latency reduction when compared to other general,
high-level partitioning schemes.

I. INTRODUCTION

Applications for discrete signal transforms (DSTs), such as
the discrete Fourier transform (DFT), abound in such diverse
fields as communications, biomedical sciences, and astronomy.
In these and many other fields, increases in the quantity and
resolution of data and the need for faster processing demand
novel platforms and methodologies for the implementation of
DSTs. Distributed (dedicated) hardware architectures (DHAs),
such as multi-FPGA boards, represent a cost effective option
for the high performance implementation of DSTs and other
performance-demanding algorithms.

The achievement of effective implementations to this type
of architectures is highly dependent on the process of parti-
tioning. Numerous approaches have been proposed for manual
and automated partitioning of algorithms at the behavioral and
structural levels. At the structural-level, techniques incorporate
unit/module cloning and communication channel multiplexing
in an effort to solve the communication overhead and I/O
limitations characteristic of DHAs. Some researchers have
introduced higher-level considerations to influence structural
partitioning methods [1]. Despite these attempts, incorporating
functional information into structural partitioning methods is
difficult, since at this level the structures that implement an al-

∗ This research was partially supported by NASA Space Grant NGT5-
40091 and NSF grant EPS-0223152.

gorithm have already been decided and high-level information
has been fundamentally lost.

A commonly observed fact in CAD tools is that optimiza-
tion methodologies that work at higher levels of abstraction
usually achieve better performance than their lower level
counterparts. This behavior has also been observed in high-
level partitioning (HLP) methods [2]. Although several HLP
methods have been reported, most of them are designed
to solve general partitioning problems, and tend to apply
generic local optimization techniques that miss out on alternate
formulations that become apparent only with some knowledge
of the algorithm’s functionality.

The algorithmic formulation of DSTs, specially that of
the DFT, has been extensively studied. Automated compu-
tational algebra platforms for the algorithmic manipulation
of fast transform algorithms have been proposed, as well
as automated methods to optimize DST implementation to
general purpose processor platforms [3] [4]. Techniques for the
reduction of complexity and/or number of operations for DFTs
have been known for decades (e.g. FFT, Winograd’s Fourier
Transform Algorithm), and have been utilized manually to
improve the hardware mapping and implementation of this
class of algorithms. However, to the best of our knowledge,
these methods have yet to be successfully adapted for imple-
mentations to dedicated hardware platforms, particularly for
dedicated DHAs. By analyzing automated as well as manual
partitioning strategies for DST hardware and parallel processor
implementations, we have begun to identify techniques that,
when integrated into the partitioning process, should lead to a
more straightforward exploration of the solution space when
compared to other generic, high-level partitioning methods.
This article reports on our initial findings regarding the use of
algorithmic level characteristics and features of the DSTs to
improve their partitioning to DHAs.

II. HIGH LEVEL PARTITIONING FOR DHAS

HLP methods targeted to distributed hardware architectures
(DHAs) typically operate on a flow graph representation of the
algorithm. Their structure includes a high-level cost estimation
mechanism coupled with a partitioning engine that relies on

14380-7803-9197-7/05/$20.00 © 2005 IEEE.

probabilistic or heuristic decisions to improve on an initial
solution. Besides the selection of appropriate partitioning
heuristics and algorithms, researchers in this field have focused
their attention to matters such as the integration of HLP
onto the high level synthesis process, the granularity of the
partitioned flow graph and the input specification. The order
in which partitioning is performed, relative to other high-level
synthesis tasks such as allocation/scheduling, can impact the
speed and success of a design space exploration. Approaches
performing partitioning completely separate from allocation
and scheduling or as an integrated step have been reported
with different levels of success [5][6].

The granularity of the partitioned flow graph has also been
a consideration. Fine-grained representations potentially allow
for a thorough exploration of the solution space. Coarse-
grained representations have the advantage of possessing
fewer nodes, which frequently results in a faster exploration.
Methods that combine the virtues of both levels have been
proposed, relying on the user to manually build the coarse-
grain representation [5]. This makes the quality of results
dependent on the user’s programming style and requires the
programmer to be reasonably familiarized with the target
system in order to obtain effective results.

III. DISCRETE SIGNAL TRANSFORMS ON DHAS

DSTs have received a variety of partitioning treatments
when intended for DHA implementation. Discrete Fourier and
Cosine Transforms (DFTs and DCTs) are sometimes used as
part of the benchmark set for general HLP DHA methodolo-
gies [5][6]. Manual implementations have also been proposed
for DSTs, both for their matrix representation and fast for-
mulations. The implementation of these fast versions requires
a regular but congested communication scheme among the
various computational elements, which can dominate perfor-
mance depending on the target architecture and the utilized
partitioning strategy [7]. Some approaches have recurred to
exhaustive methods to search for optimal partitions of an FFT,
resulting in partitioning schemes similar to data allocation
schemes proposed by researchers in the general purpose dis-
tributed system area [8]. This variety of treatments underlines
the need for automated methods to exploit DST characteristics
to improve their partitioning to DHAs.

IV. DSTS AND KRONECKER PRODUCTS ALGEBRA

Our partitioning methodology aims at improving design-
space exploration speed and results by incorporating DST
characteristics, such as their regularity, redundancy, and the
ability to reformulate at the algorithmic level. The effective use
of these properties for the mapping and partitioning of DSTs
requires a framework for their representation and manipulation
in which algorithmic rules can be applied and hardware
structures can be deduced in a straightforward manner. We
believe Kronecker products algebra to be an advantageous
framework for such purposes.

Any linear separable transform of a d-dimensional discrete
signal x[n], where each element can be specified by d indexes

n1, . . ., nd, can be defined by:

X[k1, .., kd] =
∑
nd

..
∑
n1

x[n1, .., nd]α1(n1, k1)..αd(nd, kd)

(1)
where the αi’s are the transform’s kernels. For example, for
the d-dimensional DFT αi(ni, ki) = e−j2πniki/Ni , and for the
d-dimensional DCT αi(ni, ki) = cos [π/2Ni(2ni + ki)]. The
separable condition of linear transforms induces mathematical
formulation of these multidimensional transforms in terms
of Cartesian or Kronecker products, in finite dimensional
multilinear algebra setting. If the linear transformations are
unitary as well, then finite abelian group theory is used on the
input/output data indexing sets to describe the transformations
in terms of characters or exponential functions of the set of
integers modulo the orders of the indexing groups and their
Cartesian products. The character representation also induces
a Kronecker products representation.

Kronecker products algebra has been used successfully, in
a manual manner, to assist in the implementation of fast
algorithms for the computation of the unitary transforms. The
main idea is as follows. A given mathematical canonical for-
mulation of an algorithm is usually expressed as a composition
of what are termed functional primitives, factors which have
been identified as efficient procedures on the targeted DHA,
establishing in this a one-one correspondence. Variants of
this canonical formulation are then sought using properties of
Kronecker products algebra and trying to satisfy certain design
criteria such as pipelining, parallelism, data flow control,
etc., each new variant, in turn, producing a different DHA
implementation. The efficiency of the algorithm is usually
evaluated through a cost objective function imposed on the
design framework.

V. PARITIONING METHODOLOGY

The main components of our partitioning methodology are
illustrated in Figure 1. We begin by accepting a specification of
the DST using Kronecker algebra, along with implementation
details such as the resolution of the transform points. High
level partitioning is conducted in two main stages: (1) the
algorithmic formulation exploration (AFE) stage followed by
(2) a refinement stage.

In the AFE stage, algorithmic formulations for the specified
DST are generated and evaluated in search for one whose
corresponding partitioning/placement scheme exhibits minimal
communication and area costs for the targeted architecture.
To do this, each algorithmic formulation is represented as
a coarse-grained flow graph whose nodes denote functional
primitives. Each of these functional primitives has been iden-
tified and characterized as a procedure or hardware block that
can be efficiently implemented to one of the architectural
devices. Then, a deterministic partitioning algorithm is run
on the graph, assisted by high-level area and communication
estimators. The algorithmic formulation that minimizes the
area/communication objective function and its corresponding
partitioning/placement scheme are set for the next stage.

1439

AFE Stage

Formulation manipulator

Partitioning/Placement

Implementation
 constraints

High−level description
of Target Architecture

Library of heuristics

Interconnection

Hardware

Evaluators/Estimators

Hardware

Implementation
Exploration

Evaluators/Estimators

LatencyScheduling
Heuristics

High−level description
Partitioning Scheme

Refinement Stage

DST Kronecker
Formulation

Fig. 1. Conceptual map of methodology.

In the refinement stage, the actual functional units that will
be implemented to each of the assigned tasks are determined.
For this task, we first conduct a functionally-aware allocation
process in which the number and type of functional units
is determined for the group of tasks assigned to a device.
Following this, scheduling opportunities are explored in an
effort to further improve the latency of the implementation by
moving specific components to underutilized devices.

We foresee several advantages of our methodology over
previous schemes. Granularity of the partitioned graph is
coarse, resulting in a fast partition space exploration, yet its
nodes have been deduced from a formulation that can be
transformed to result in improved implementation given the
partitioning heuristic and the underlying architecture, avoiding
dependence on programmer style. The regularity of DST
algorithms allows us to handle their allocation and scheduling
aside from the partitioning loop, contributing to the speed of
the HLP solution space exploration.

VI. ASSESSMENT

An assessment of the proposed partitioning methodology
has been done for several DFTs targeting a multi-FPGA ar-
chitecture modeled after the Wildforce family from Annapolis
Micro Systems. The target architecture, illustrated in Figure 2,
consists of 4 FPGAs connected in a linear array topology with
a crossbar serving as a global communication channel. Similar
assumptions and architecture have been used before to report
fine and coarse-grained high-level multi-FPGA partitioning
heuristics [5]. We shall refer to these heuristics as SBPH
henceforth. The cost of communications and memory I/O
are as follows: 2 cycles for exchanging data through the
inter-device lines (c01, c12, c23), 4 cycles for communicating
through the crossbar (cXB), 3 cycles for a memory read and
1 cycle for each memory write. In addition, 4 cycles are
assumed for synchronization during communication between

devices. Both the direct interconnections and the crossbar
are 36 bits wide. Each FPGA is a Xilinx XC4013 with 576
available configurable logic blocks (CLB). We illustrate the
process of partitioning a 16-bit fixed-point 4 × 4 FFT to this
architecture using the proposed methodology, with latency as
our minimization objective. Our main intention is to show the
impact of formulation exploration on the partitioning results.

36

01 c12 c23

cXBCrossbar

FPGA 0 FPGA 1 FPGA 3FPGA 2
36 36

36 36 36

36

c

Fig. 2. Target architecture for assessment.

The formulation of a size-4 × 4 FFT using Kronecker
Algebra could be stated as follows1:

F4×4 = (F4 ⊗ I4)(I4 ⊗ F4)P 16
4 (2)

A coarse-node flow graph consisting of 8 nodes, each rep-
resenting a size-4 FFT can be deducted from the previous
expression, as illustrated in Figure 3a. Each of these nodes
can have different implementations, which vary in latency and
area. If a maximum area / minimum latency implementation
fits in the available area, we use it trusting that it will result in
a minimal latency global implementation. Otherwise, we use
the minimal area for all nodes during the initial partitioning
phase and explore other implementations later. In the F4×4

case, the maximum area implementation is estimated to fit into
the compound logic area of the target system. Each F4 area
is estimated at 128 CLBs, resulting in a total functional unit
area of 1024 CLBs, notably less than the platforms capacity
of 2304. This leaves more than 50% of the available logic
area for the control unit and additional registers needed for
the final implementation.

x[2]

F4

F4

F4

F4 F4

F4

F4

F4

x[8]
x[0]

x[4]
x[12]

x[6]
x[14]

F4

F4

F4

F4

F2

F2

F2

F2

F2

F2

F2

F2 F2

F2

F2

F2

F2

F2

F2

F2X[1]
X[0]

X[3]
X[2]

x[3]
x[11]

x[15]
x[7]

x[9]
x[1]

x[6]
x[14]

x[10]
x[2]

x[4]
x[12]

x[8]
x[0]

x[9]
x[1]

x[5]
x[13]

x[15]
x[7]

x[3]
x[11]

x[5]
x[13]

X[1]
X[0]

X[3]
X[2]

X[5]
X[4]

X[7]
X[6]

X[5]
X[4]

X[7]
X[6]

X[9]
X[8]

X[11]
X[10]

X[9]
X[8]

X[11]
X[10]

X[13]
X[12]

X[15]
X[14]

X[13]
X[12]

X[15]
X[14]

(a) (b)

x[10]

Fig. 3. Comparison of two equivalent formulations for a 4 × 4 FFT.
Dashed horizontal lines represent partitions. Dashed interconnections denote
communications through the crossbar.

1In this notation: ⊗ represents the Kronecker product, P n
m is a stride

m permutation, T n
m is a diagonal matrix of coefficients, also known as the

twiddle factors, and FN is a size-N Fourier transform.

1440

Given that communication channels will probably represent
the most constrained resource for highly connected algorithms
such as the fast versions of DSTs, we use the cut size as a high-
level estimator that should translate to reduced latency on the
implementation. The coarse node graph is partitioned with the
objective of minimizing an objective function that considers
the cost for communicating through the various architectural
channels:

Fobj = max
p∈paths

(
∑

i∈stages

Cost(cp,i)) , (3)

where paths refers to the input to output paths in the graph, and
stages refers to the various stages of communication between
the processing elements. Cost(cp,i) is the product of the cost
for the communication channel crossed by path p during stage
i, if any, and the number of points that are transferred through
that channel. For example, the partition scheme shown in
Figure 3a has 1 stage of communication and requires that six
points communicate through the crossbar, which has a cost of
4. The objective function evaluates to 24.

Our partitioning heuristic guides the reformulation onto an
expression such as:

F4×4 = (F4 ⊗ I4)(I4 ⊗ ((F2 ⊗ I2)T 4
2 (I2 ⊗ F2)))P 16

4 , (4)

whose partitioning scheme, shown in Figure 3a would reduce
the cost function to 16. A scheduled version of this partition
scheme would imply a latency of 116 cycles using an ASAP
algorithm. This can be compared to previous works in HLP
that have used DSTs as part of their benchmark set, which
obtained a latency of 179 cycles for an F4×4 [5]. We believe
that our advantage lies in the use of formulation-defined coarse
graphs as well as the reliance on neighbor direct device
connections.

Table 1 shows the estimated latency for several FFT sizes
using our methodology vs. lower bound projections for SBPH.
The lower bounds were obtained by scaling the reported SBPH
F4×4 results, using the approach presented by Hagen, et al.[9].
This approach essentially states that given a heuristic H , an
instance I and the solution cost for the instance cH(I), if
a new instance kI is constructed by scaling the original by
k, then cH(kI) > k · cH(I). Latency is computed as the sum
of the I/O latency, processing latency, and intercommunication
latency (i.e., time spent waiting for data from other partitions).
I/O latency scales linearly with the size of the transform, while
processing latency, being proportional to the number of op-
erations, is scaled accordingly. Intercommunication latency is
scaled linearly, following the lower bound cut size for butterfly
networks proved by Bornstein, et al. [10]. As is observed in Ta-
ble 1, estimated latencies obtained using our method compare
favorably with the lower bound estimates, achieving up to 35%
latency reduction. Furthermore, we estimate that a tool that
implements our methodology would avoid excessive run-times
as encountered in some reported work. First, our methodology
removes the scheduling/allocation tasks out of the partition
iterative improvement loop. Secondly, the regularity of the

flow graphs allows us to use graph partitioning heuristics
which are not purely stochastic and thus time consuming. For
instance, we have used METIS [11], a highly effective and fast
graph partitioner using the multi-level partitioning paradigm,
to obtain competitive partitioning schemes for graphs obtained
from Kronecker formulations of the FFT.

TABLE I

ESTIMATED LATENCY FOR SEVERAL FFT SIZES.

Lower bound [5] Our approach
FFT size (cycles) (cycles)

4 × 4 179 116
8 × 8 804 696

16 × 16 3680 3080
32 × 32 16800 13520

VII. CONCLUSIONS AND FUTURE WORK

Our initial assessment suggests that the integration of DST
characteristics onto the high-level partitioning of these algo-
rithms promises to improve partitioning results as well as lead
to faster design space exploration. We have evidenced how
transformations at the formulation level can favorably impact
partitioning results. Although our assessment only reflects
experimentation with Discrete Fourier Transforms, we foresee
that our methodology will be effective for other DSTs as
well, given that they exhibit similar regularity and formulation
features. Experimentation with other DSTs is part of our future
work. Our plans also include the development and validation
of the various components of the proposed methodology, and
the integration of these components into a prototype high-level
partitioning tool.

REFERENCES

[1] Wen-Jong Fang and Allen C.-H. Wu. Multiway FPGA partitioning by
fully exploiting design hierarchy. ACM Trans. Des. Autom. Electron.
Syst., 5(1):34–50, 2000.

[2] N. Kumar, V. Srinivasan, and R. Vemuri. Hierarchical behavioral
partitioning for multicomponent synthesis. In EURO-DAC ’96, pages
212–217, 1996.

[3] Markus Püschel et al. SPIRAL: Code generation for DSP transforms.
Proceedings of the IEEE, special issue on ”Program Generation,
Optimization, and Adaptation”, 93(2), 2005.

[4] Matteo Frigo and Steven G. Johnson. The Design and Implementation
of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[5] V. Srinivasan, S. Govindarajan, and R. Vemuri. Fine-grained and coarse-
grained behavioral partitioning with effective utilization of memory and
design space exploration for multi-FPGA architectures. IEEE Trans.
Very Large Scale Integr. Syst., 9(1):140–159, 2001.

[6] O. Bringmann, C. Menn, and W. Rosenstiel. Target architecture oriented
high-level synthesis for multi-FPGA based emulation. In Proceedings of
the European Design and Test Conference 2000, pages 326–332, 2000.

[7] A. Jones, A. Nayak, and P. Banerjee. Parallel Implementation of Matrix
and Signal Processing Libraries on FPGAs. In Intl. Conf. on Parallel
and Distributed Computing and Systems (PDCS), August 2001.

[8] Pinit Kumhom. Design, Optimization, and Implementation of a Univer-
sal FFT Processor. PhD thesis, Drexel University, 2001.

[9] L.W. Hagen, D.J.H. Huang, and A.B. Kahng. Quantified suboptimality
of VLSI layout heuristics. In DAC’95, pages 216–221, 1995.

[10] C. F. Bornstein, A. Litman, B. M. Maggs, R. K. Sitaraman, and
T. Yatzkar. On the bisection width and expansion of butterfly networks.
In Proceedings of the 12th International Parallel Processing Symposium,
pages 144–150, March 1998.

[11] George Karypis. Multilevel Hypergraph Partitioning, chapter 1. Kluwer
Academic Publishers, 2002.

1441

