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Abstract—The work presents results of on going research on
signal-based automated information processing in distributed
systems. Some results are presented in the context of a grid
services infrastructure for environmental surveillance monitoring
applications. The research work uses concepts, principles, rules,
and techniques of information-based complexity, non-abelian
signal processing, graph algebras, and signal-based holomor-
phic information processing to characterized flow and compu-
tational complexities of information-to-user (I2U) processes in
a distributed information processing environment, calling this
approach information-to-user processing complexity. Information
flow characterization in a distributed information processing
(DIP) system is defined as the study of attributes associated with
the structure, content, transferring, and meaning of information
as it is carried by signal-messages coded from observable entities
in the physical world to an information user through a distributed
information processing environment. The work deals, in partic-
ular, with information flow characterizations of ultra-wideband
(UWB) signals for wireless communications and sensing opera-
tions pertaining to imaging applications. Holomorphic signals and
systems modeling, based on linear combinations of polynomial
phase complex exponential signals and classes of linear operators,
is utilized to aid in the study of multi-input multi-output wireless
communications channels in sensor imaging applications.

I. INTRODUCTION

This report informs on some of the research work being
conducted as part of a project entitled “An Infrastructure for
Wide Area Large Scale Automated Information Processing”
(WALSAIP), supported by NSF under the Grant No. 0424546.
The report describes a proposed framework for signal-based
distributed signal processing (SbDSP) at the physical layer of
an open grid infrastructure which interacts with a distributed
sensor network (Figure 1). A SbDSP system may serve
as an infrastructure for processing signals arriving from
sensors interacting with an environment in order to extract
information important to a user. The SbDSP framework is
based on an operator algebras approach for the treatment of
information carrying signals which are modeled as vectors in
a linear signal space (Figure 2). An operator algebras setting
allows for a formal study of computational complexity issues
associated with signal-based information processing using
concepts and techniques of information-based complexity
theory [1].

It also allows for the characterization of information from
the multiple nodes of the distributed signal processing
infrastructure to an information user. To characterize
information flow, all acquired time-depending signals are
represented as images in a mixed time-frequency plane.
Information-theoretic procedures are then used to address
information content. In this context, information content
could be measured at each node as a function of time/space,
allowing for the concept of space-time information flow
(flux). At each node of a SbDSP system, analytic signals
are utilized to model a large class of signals interacting
with the environment, thus, allowing for another concept,
namely, signal-based holomorphic information processing.
Two particular applications are addressed by the SbDSP
framework: acoustical signal beamforming and chirp radar
parameter estimation. Section 2 describes how the proposed
SbDSP framework is utilized in acoustical signal processing
applications. Section 3 describes some results of using the
SbDSP for chirp radar parameter estimation in point targets
scattering systems dynamics [2].
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Fig. 1. Basic Open Grid Infrastructure Model
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Fig. 2. Operator Algebras Framework

II. ACOUSTICAL SIGNAL PROCESSING

This ongoing work studies formal concepts and fundamental
principles for the characterization of acoustical signals in
sensor-based distributed signal processing (SbDSP) systems.
A SbDSP system deals with the treatment of signals acquired
from a prescribed set of physical, chemical, or biological
sensors which are spatially distributed and which have an
associated network topology such as a wired or wireless
sensor network. The treatment of signals is accomplished
through the implementation of computational signal process-
ing methods which usually require a combined system level
hardware/software co-design approach. Here, a computational
signal processing method is defined as a structured set of
computational signal processing algorithms. A computational
signal processing algorithm is defined as a finite composition
of operators. Of special importance to this work are SbDSP
systems associated with wireless sensor networks which treat
acoustical signals acquired from physical sensors in gen-
eralized environmental observatories. A particular wireless
sensor network testbed is currently being developed at the
Jobos Bay National Estuarine Research Reserve (JBNEER)
environmental observatory situated in the southern part of the
island of Puerto Rico. JBNERR encompasses a chain of 15
tear shape mangrove islets known as Cayos Caribe and the
Mar Negro area in western Jobos Bay. The reserve is home
to the endangered brown pelican, peregrine falcon, hawksbill
sea turtle, and West Indian manatee. It is managed by the US
National Estuarine Research Reserve System of the National
Oceanic and Atmospheric Administration.

For modeling monitoring activities in an environmental
observatory, a one-to-one mapping is established between each
node of a wireless sensor and each node of a SbDSP. A
fundamental problem considered by this work is how to appro-
priately map a computational signal processing method to an
SbDSP system associated with a wireless sensor network for
the structural content analysis of acoustical signals modeled
as finite length discrete-time signals. The set of all discrete-
time signals of a particular, say L, is said to form a finite
dimensional linear space denoted by the expression `(ZL),
and ZL = {0, 1, 2, . . . , N − 1} is the standard indexing set.

A finite length discrete-time complex signal x ∈ `(ZN ) is
denoted by the expression x : ZN → C , where C is
normally taken to be the set of complex numbers. Closed
subsets of `(ZL) are used in this work, with an arbitrary closed
subset denoted by the symbol γk ⊂ `(ZL). Each node in a
SbDSP system is assumed to be endowed with the following
inherent parameterized attributes: i) a raw-data storage unit
capable of storing finite length digital signals, ii) a digital
signal processing unit with direct access to the digital raw-data
storage unit, iii) a finite number of analog to digital conversion
(A/D) units, iv) a finite number of digital to analog conversion
units, and a general purpose processor (GPP), with a cache
unit serving as local memory, sharing the raw-data storage
unit which serves as extended or external memory.

Each SbDSP system node is modeled as a system, trans-
form, or operator which takes as its input a single finite
length digital signal and it produces as output another finite
length digital signal, not necessarily the same length as the
input signal. To generalize the distributed signal processing
theory formulated in this work, digital signals are modeled
mathematically as discrete-time signals except when it is
necessary to specify a signal’s quantization technique utilized
in a particular application. A SbDSP node, with its inherent
attributes, can then be modeled as a point in a linear space
of operator algebras, this space denoted by L(A). Thus, an
operator ρm ∈ L(A) becomes a point of this algebra.

The SbDSP system model presented in this work is sim-
plified by assuming that all operators are linear, with special
attention given to finite dimensional, linear, and/or discrete-
time shift invariant operators. These types of operators always
admit a matrix representation with respect to a particular
signal basis. A basic sensor-based distributed signal processing
(SbDSP) system may be modeled as a directed graph, where
the vertices of the directed graph represent linear closed
subspaces and the edges represent linear operators (Figure 3).
A linear operator ρm,n : γm → γn, acting on an element
of a closed subspace γm and producing an element γn ,
then becomes an element of a finite composition, orbit, or
route which has been defined here as a computational signal
processing algorithm.

A SbDSP system is also spatially modeled as a topological
structure associated to an ordered rectangular mesh, termed a
performance evaluation testbed (PET) mesh, with each node
of the particular SbDSP system considered to be an element
inside the rectangular mesh and each square of a rectangular
mesh admitting one and only one SbDSP node (Figure 4).

Flow characterizations of computational signal processing
methods is being utilized in this work as an approach at
assisting in the problem of mapping computational signal
processing methods to SbDSP systems. In essence, a com-
putational flow characterization is defined as the information-
based complexity associated with a computational signal pro-
cessing method [1]. This work addresses computational signal
processing methods in structural signal content analysis and
acoustical waveform beamforming operations in environmen-
tal observatory applications.
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Fig. 3. A directed graph representing a SbDSP
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Fig. 4. DbDSP Over a Structural Mesh

In these environmental observatories, SbDSP systems are
modeled as overlay networks built on top of wireless sensor
networks and deal with applications where either the signal
sensing (acquisition), the signal communication (conveying),
the signal processing (treatment), or a combination these as-
pects exhibit some form of space/time distribution. Distributed
signal processing seeks to study these three aspects of a
signal, namely, signal sensing, signal communication, and
signal processing, in a unified and integrated manner.
Structural content analysis of acoustical signals deals with
the formulation of computational tools for representing and
analyzing inherent signal characteristics and attributes that are
only indirectly observable in a combined temporal and spectral
depiction in the time-frequency plane.
Examples of these computational tools are the chirp Fourier
transform, the fractional Fourier transform, Wigner distribu-
tion, the Weyl-Brezin transform, the Zak transform, the short-
time Fourier transform, and the cross-ambiguity function. It
has been demonstrated that the processing nature of these tools
can be studied in a unified manner using concepts of Weyl-
Heisenberg systems and non-abelian signal processing.

Also, Kronecker products algebra, a branch of finite-
dimensional multi-linear algebra, can be used as a tool to aid
in the formulation of computational frameworks such as those
utilized for unitary discrete signal transforms [3].

Emphasis on modular and scalable computational signal
processing (CSP) methods is given in this work for imple-
mentation on targeted DSP and GPP units. These methods
deal with the algorithmic treatment of finite duration sig-
nals in order to extract information important to a user or
software/hardware agent. The modular and scalable approach
to these computational methods implies that the functions
and structures of the algorithmic treatment should adapt to
changes in scales of an associated target system as well as
to the size or dimensionality of the signals to be processed.
The algorithmic treatment concentrates on understanding fun-
damental distributed signal processing principles utilized to
observe, quantify, represent, transform, qualify, and render
information carrying signals emanating from a physical en-
vironment such as an environmental observatory. The CSP
methods concentrate on algorithms designed for the integrated
digital communications and/or processing of signals in SbDSP
systems overlaying distributed sensor networks. This work also
addresses computational frameworks for acoustic waveform
beamforming, a signal processing operation used widely in
wireless communications, radar, and sonar applications to
estimate the direction of arrive (DOA) of a propagating
waveform source when the waveform is received by an array
of antennas or sensors. Beamforming can also be used to steer
a transmitted beam in a particular direction when sensors are
replaced by transmitters (Figure 5).
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III. CHIRP RADAR PARAMETER ESTIMATION

Chirp radar signal parameter estimation operations are time
consuming and computationally taxing processes. A discrete
chirp radar signal is usually modeled as a discrete multi-
component polynomial phase signal as follows:



x[n] =
K−1∑

k=0

AK · ej
∑M−1

m=0
αk,mnm

+ ρ[n] , n ∈ ZN (1)

Here, K and M are positive integers, AK are complex
scalars, ρ is a discrete noise signal or interference signal,
and αk,m, k ∈ ZK , k ∈ ZM , are the parameters to be
estimated. For a multi-component binomial phase discrete
signal, a discrete chirp Fourier transform (DCFT) may be
applied to extract the desired parameters. The DCFT of a
discrete signal x[n], n ∈ ZN , is defined as follows:

Xc[k, l] =
1√
N

N−1∑
n=0

x[n]W kn+ln2

N , k, l ∈ ZN (2)

Here, WN = e−j 2π
N , and ZN = {0, 1, 2, . . . , N − 1}.

Computing the DCFT of the discrete signal x[n] ∈ `2(ZL),
where `2(ZL) is the linear space of all discrete complex
signals of length N , is equivalent to performing N discrete
Fourier transform (DFT) computations.

A. Modeling Time-Critical Targets

Part of this work centers on modeling time-critical targets
through multi-component polynomial phase discrete complex
signals. The model uses a scattering channel which takes
as input a single component polynomial phase signal and
it produces a multi-component polynomial phase signal. The
channel attributes are then encoded in the polynomial phase
signal parameters and a parameter estimator may then be used
to extract these parameters. The parameter array space can
further be treated to extract further intelligence (Figure 6).
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Fig. 6. Information Flow for Parameter Estimation

B. DCAF Implementation

The discrete cross-ambiguity function (DCAF) may be
computed between a transmitted signal xR and a received xT

through the use of the following expression:

AxT ,xR
[m, k] =

∑

n∈ZN

xT [n] · x∗[〈n + m〉N ]e−j 2π
N kn (3)

The DCAF may be used as a parameter estimator for single
component binomial signals and it may be implemented using
a linear operator approach (Figure 7).
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C. DCFT Implementation

The DCAF is very useful for time delay/Doppler estimation
as well as for modeling point target response functions.
Under certain signal to noise ratio (SNR) conditions [5], the
DCFT performs better than the DCAF for estimating multi-
component polynomial phase signal parameters due to the lack
of cross-terms effects. A new algorithm has been formulated
for the computation of the DCFT. The algorithm has been
formulated using Kronecker products algebra, a branch of
multi-linear finite dimensional algebra. The algorithm for com-
puting the DCFT of an N - point multicomponent polynomial
phase signal may be formulated performing N matrix-vector
computations where each matrix may be expressed as the
composition of sparse matrices through the following theorem:

Theorem 3.1:

CN [l] = ((FN )⊗ I2)TN, N
2
(Γ′N,2[l]⊗ F2)P−1

N,2 (4)

Where,

TR,S = diag([D0
N,S , D1

N,S , . . . , DR−1
N,S ])

DN,n = diag([1, WN , . . . , Wn
N − 1])

P−1
N,2 = Permutation Matrix
FN = Fourier Matrix

Γ′N,2 = ([1,W l
N , . . . ,W

N
2 −1

2

N ])

Table I below provides some implementation results for
the DCFT on single general purpose processor (GPP) and
digital signal processor units. The first column of the table
describes the length of the signal. The second column provides
computational time, in seconds, for the DCFT computation on
a single GPP (Pentium III - 1.26 GHz). Algorithm efficiency
is currently being evaluated for cluster implementations. The
third column provides FFTW algorithm numbers for compar-
ison purposes. The last two columns present the computation
of the DCAF and the FFT, respectively, on a TMS320C6713
DSP processor, again, for comparison.



TABLE I
SINGLE PROCESSOR IMPLEMENTATION RESULTS

DCFT DCAF FFT
FFTW FFTW DSP DSP

Samples Pentium III Pentium III TMS320C6713 TMS320C6713
32 8.6E-04 5.9E-05 5.7E-02 3.6E-05
64 3.1E-03 1.3E-04 2.9E-01 8.0E-05
128 1.2E-02 1.5E-05 1.3E+00 1.8E-04
256 4.6E-02 2.7E-05 5.8E+00 4.0E-04
512 1.8E-01 5.1E-05 2.5E+01 9.0E-04

1024 7.4E-01 1.1E-04 1.4E+03 2.0E-03
2048 3.0E+00 2.3E-04 8.8E+03 2.5E-02
4096 1.3E+01 5.3E-04 3.8E+04 5.5E-02

Fig. 8. Multicomponent DCFT Output

Fig. 9. Unsuccessful Multicomponent Estimation

IV. CONCLUSION

A framework has been proposed for signal-based distributed
signal processing (SbDSP). This framework may be instan-
tiated as an infrastructure for the processing of signals ac-
quired from environmental sensors. The processing operation
effects an algorithmic treatment on sensor acquired signals.

Fig. 10. Succesful Multicomponent Estimation

The SbDSP framework was described in terms of operator
algebras. Signals are represented as images in mixed time-
frequency plane to study their information content using
information theoretic measures. Information flow in a SbDSP
system is characterized by expressing the information theoretic
measures as a function of space/time.
The work presented here is part of a collaborative work
within the WALSAIP Project aiming at formulating a novel
framework that can be used to guide the design of future
wireless sensor networks (WSNs) providing environmental
monitoring services. The focus of the WSN framework is
a network layer design. In this framework formulation the
following considerations are observed: 1) the future WSN shall
be heterogeneous, 2) the network layer design shall better
meet the requirements of applications and services, 3) the
network layer design shall be able to utilize advanced wireless
communications and signal processing technologies, and 4) the
network layer shall provide monitoring functionality.
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